1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	37.

2. Data about the subject

2.1 Subject name	Logic programming				
2.2 Course responsible/lecturer Prof. dr. eng. Rodica Potolea — Rodica.Potolea@cs.utcluj.ro					
2.3 Teachers in charge of seminars/ Assoc.prof. dr. eng. Camelia Lemnaru – Camelia.Lemnaru@cs.utcluj.ro					
laboratory/ project					
2.4 Year of study	Ш	2.5 Sem	nester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		Е
DF – fundamentală, DD – în domeniu, DS –		n domeniu, DS – de specialitate, DC – complementară	DD		
2.7 Subject category DI – Impusă, L		00р – ор	oțion	ală, DFac – facultativă	DI

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars	1	Laboratory	2	Project	
3.2 Number of hours per semester	70	of which:	Course	28	Seminars	14	Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material	and no	otes, biblio	graphy							10
(b) Supplementary study in t	he libr	ary, online	and in th	ne fiel	ld					5
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						7				
(d) Tutoring						3				
(e) Exams and tests						5				
(f) Other activities:										
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 30										
3.5 Total hours per semester (3.2+3.4)										
3.6 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Fundamental Algorithms, Programming
4.2 Competence	Logic

5. Requirements (where appropriate)

5.1. For the course	Whiteboard, projector, computer
5.2. For the applications	Computers, specific software (SICStus Prolog). Mandatory attendance of seminars
	and laboratory works.

6.1 Professional competences	C2 – Designing hardware, software and communication components (5 credits)
	C2.1 – Describing the structure and functioning of computational,
	communication and software components and systems
	C2.2 – Explaining the role, interaction and functioning of hardware, software and
	communication components
	C2.3 – Building the hardware and software components of some computing
	systems using algorithms, design methods, protocols, languages, data structures,
	and technologies

	C2.4 – Evaluating the functional and non-functional characteristics of the
	computing systems using specific metrics
	C2.5 – Implementing hardware, software and communication systems
6.2 Cross competences	N/A

7.1 General objective	The main goal of the topic is getting the ability of symbolic processing in general, and logic processing in particular; moreover, acquiring abilities for providing specifications in logic, executable form. Estimating the performance of the solutions designed and implemented in logic formalism.
7.2 Specific objectives	Declarative and procedural semantics Extra-logic operators Meta-programming Data Structures in logic programming. techniques associated with efficiency estimation Incomplete structures, difference lists Types of recursions with advantages and limitations Development of complex applications

8. Contents

5. 55.155.155			
8.1 Lectures	Hours	Teaching methods	Notes
Introduction, first order logic declarative and procedural semantics	2		
First order logic declarative and procedural semantics (continued)	2		
Negation as failure; Backtracking and cut	2		
Prolog programming techniques	2	Interactive Course.	
Prolog programming techniques (continued)	2	Teaching relying on	
Prolog programming techniques (continued)	2	examples, questions	
Prolog programming techniques (continued)	2	and discussions.	
Metalogic predicates	2	Continuous	
Extra-logic predicates	2	evaluation of	
Nondeterministic Programming	2	knowledge	
Incomplete data structures; difference lists	2	aquisition.	
Search techniques	2		
Search techniques (continued)	2		
Search techniques (continued)	2		

Bibliography

- 1. L. Sterling, E. Shapiro, *The Art of Prolog*, MIT Press, 1994.
- 2. W.F. Clocksin, C.S. Mellish , *Programming în Prolog*, Springer-Verlag Telos, 1994.
- 3. R. Potolea, *Programare Logică*, vol 1,U.T.Pres, 2007.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Prolog language	3		
Sets, sorting	3		
Lists	3		Seminars –
Basic operations on lists	3	Semiras and hands	design
Incomplete lists; difference lists	3	on laboratory works	solutions to
Trees	3	with specific topics.	problem,
Searching in trees	3	Problem solving	implementation
Incomplete trees	3	with tracing and	on board.
Modeling control structures in Prolog	3	performance	Laboratory -
Graphs	3	evaluation.	computer work.
Searching in graphs	3		(individual)
Basic graphs algorithms	3		
Metaprogramming	3		
Hands on evaluation	3	Hands on evaluation	mandatory
Bibliography	_		_

- 1. Rodica Potolea, Programare Logica, UT Pres, 2007
- 2. T.Muresan, R. Potolea, C. Lemnaru, Resources for the laboratory sessions http://users.utcluj.ro/~cameliav/lp.php
- 3. T. Mureşan, R. Potolea, E. Todoran, A.D. Suciu, Programare Logică Indrumător de Laborator, Romsver, 1998.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Classical topic of the Computer Science and Information Technology domain, which develops the ability to express executable specifications in a logic language (standard Prolog, Sictus Prolog). The topic enables the assimilation of knowledge and builds necessary skills to other disciplines (AI family), and useful in fundamental / applied research. Ability to analyze specifications and solutions in a unified manner, following partial and total correctness and efficiency at the same time.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Problem solving using specific techniques	Partial Exam (PE) (written) + Final Exam (FE) (written and / or oral)	20% +50%
Seminar	Problem solving	Practical test (Lab) (PC)	30%
Laboratory			
Project			

Minimum standard of performance:

Grade calculus: 20% midterm + 30% laboratory + 50% final exam Conditions for participating in the final exam: Laboratory \geq 5

Conditions for promotion: final exam ≥ 5

The laboratory examination can be taken at most twice during one academic year (during the semester and in the winter re-examination session).

Course responsible Prof. dr. eng. Rodica Potolea

[.] Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	38.

2. Data about the subject

2.1 Subject name			Forma	Formal Languages and Translators			
2.2 Course responsible/lecturer			Assoc.	Assoc.prof. dr.eng. Emil Şt. Chifu – <u>emil.chifu@cs.utcluj.ro</u>			
2.3 Teachers in charge of seminars/			Ing. Mi	Ing. Mihai Anton Cerghizan			
laboratory/ project							
2.4 Year of study	Ш	2.5 Sem	ester	ester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		Е	
2.7 Subject category		ntală, D	ntală, DD – în domeniu, DS – de specialitate, DC – complementară				
		mpusă, L	00р – ор	oțion	ală, DFac – facultativă	DI	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material	and no	otes, biblio	graphy							7
(b) Supplementary study in t	he libr	ary, online	and in th	ne fie	ld					5
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							4			
(d) Tutoring										
(e) Exams and tests							3			
(f) Other activities:							0			
3.4 Total hours of individual study	(suma	(3.3(a)3.	3(f)))		19					
3.5 Total hours per semester (3.2+3.4) 75										
3.6 Number of credit points					3					

4. Pre-requisites (where appropriate)

4.1 Curriculum	Computer Programming, Data Structures and Algorithms		
4.3 Competence	Basic knowledge of programming and data structures (preferably in the C		
	language)		

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Computers, specific software

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (2 credits) C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and
	communication systems

	C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems			
	C3 – Problems solving using specific Computer Science and Computer Engineering tools (2 credits) C3.1 – Identifying classes of problems and solving methods that are specific to computing systems			
	C3.2 – Using interdisciplinary knowledge, solution patterns and tools, make experiments and interpreting their results			
	C3.3 – Applying solution patterns using specific engineering tools and mehods			
	C3.4 – Comparatively and experimentaly evaluation of the alternative solutions			
	for performance optimization			
	C3.5 – Developing and implementing informatic solutions for concrete problems			
6.2 Cross competences	N/A			

7. Discipline Objective (as results from the key competences gameu)						
7.1 General objective	 To know the phases, components, and algorithms used by typical language translators. 					
	 To provide a formal basis for the development of concepts relating to lexical and syntactic processors in translators. 					
7.2 Specific objectives	 To know the underlying formal models such as finite state automata and push-down automata, and to understand their connection to language definition through regular expressions and grammars. 					
	 To understand the relationships between formal descriptions of the automata in the formal language theory and their practical implementations as lexical and syntactic analyzers in translators. 					
	 To know the classes of languages for which a deterministic parser can be implemented. 					
	 To describe the syntax of languages to be implemented by using grammars and regular expressions. 					
	 To design, develop and test a software project, by utilizing specialized software tools (parser generators), in order to arrive at a translator for an artificial language. 					
	 To master and control the phenomena of ambiguity and nondeterminism (conflicts) which occur when using parser generators and lexical analyzer generators. 					

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Descriptive tools: strings and rewriting systems, grammars.	2		
Descriptive tools: derivations and parse trees.	2	The main ideas with	
Regular grammars and finite automata: finite automata.	2	- The main ideas with multimedia tehniques	
Regular grammars and finite automata: state diagrams and regular	_	- Details and examples	
expressions.	2	at the blackboard, in	
Context-free grammars and pushdown automata: pushdown	2	interaction with the	
automata.	2	students - There are	
Top-down analysis and LL(k) grammars: LL(k) grammars	2	consultation hours	
Top-down analysis and LL(k) grammars: the LL(k) algorithm	2	- Students are invited	
Top-down analysis and LL(k) grammars: elimination of left recursion,	_	to collaborate in	
left factoring.	2	research projects	
LL parsers: strong LL(k) grammars, the LL(1) parsing algorithm.	2]	

LL parsers: the LL(1) parsing algorithm, computation of FIRST and	2	
FOLLOW sets.	2	
Bottom-up analysis and LR(k) grammars: situations and closure of a	2	
nonterminal, the $LR(k)$ algorithm.	2	
Bottom-up analysis and $LR(k)$ grammars: the $LR(k)$ algorithm.	2	
LR parsers: the LR(0) parsing algorithm.	2	
LR parsers: LR(0) states.	2	

Bibliography

- 1. W.M. Waite and G. Goos, Compiler Construction, Springer-Verlag, 1984.
- 2. I.A. Leția and E.Şt. Chifu, Limbaje formale și translatoare, Ed. Casa cărții de știință, 1998.
- 3. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley, 1986.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Lexical analyzer for C.	2		
The generator of lexical analyzers Lex: Lex source, Lex regular expressions, Lex actions, ambiguous rules, Lex source definitions.	2		
Lex generator: left context sensitivity, examples.	2		
The bottom-up parser generator Yacc: basic specifications, Yacc syntax, actions, lexical analysis, how the parser works.	2		
Yacc generator: ambiguity and conflicts, precedence and associativity, error handling, the Yacc environment, hints for preparing specifications.	2	Brief presentation at	
Yacc generator: support for arbitrary value types, examples (expression evaluator).	2	the blackboard, implementing and	
Yacc/ Lex applications: interpreter for a language operating on lists.	2	testing homeworks	
Yacc/ Lex applications: interpreter for a language operating on binary trees.	2	on the computer, individual assignment	
Yacc/ Lex applications::interpreter for a language operating on matrices.	2	on the computer.	
Yacc/ Lex applications: code generator for an imperative language.	2		
Yacc/ Lex test	2		
Building recursive-descent (RD) parsers: expression parser.	2		
RD parsers: parser for a language operating on binary trees.	2		
RD parsers: parser for a language operating on lists.	2		

Bibliography

- 1. The Lex & Yacc Page, http://www.combo.org/lex_yacc_page/
- I.A. Leţia, D. Marcu, B. Ungureanu, Procesoare de limbaje. Îndrumător de laborator, Universitatea Tehnică din Cluj-Napoca, 1995.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is a specialty course in Computer Science, its syllabus being both classical and modern. It teaches the students with the basic principles in the design of interpreters and translators for artificial languages. The syllabus of the course has been discussed with other important universities and companies from Romania, Europe, and USA. This syllabus has been evaluated by Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	- Problem-solving skills- Attendance, Activity	- Written exam	55%
Seminar			

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

Laboratory	- Problem-solving skills - Attendance, Activity	Assessment of the Yacc/ Lex activity and testAssessment of the RD activity and written exam	30% 15%
Project			

Minimum standard of performance:

Modeling a typical engineering problems using the domain specific formal apparatus.

Grade calculus: 45% lab + 55% final exam

Conditions for participating in the final exam: lab ≥ 5

Conditions for promotion: grade ≥ 5

Course responsible Assoc.prof. dr. eng. Emil Chifu

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	39.

2. Data about the subject

2.1 Subject name			Computer networks			
2.2 Course responsible/lecturer			Prof. dr. eng. Vasile Dădârlat – vasile.dadarlat@cs.utcluj.ro			
2.3 Teachers in charge of s	3 Teachers in charge of seminars/ Associ		Assoc.prof. dr. eng. Peculea Adrian – Adrian.Peculea@cs.utcluj.ro			
laboratory/ project			Lect. dr. eng. lancu Bogdan – Bogdan.lancu@cs.utcluj.ro			
2.4 Year of study	Ш	III 2.5 Semester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E		
2.7 Cubicat actors	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară			DD		
2.7 Subject category DI – Impusă		Impusă, [00р – ор	oțion	ală, DFac – facultativă	DI

3. Estimated total time

		T	1	ř .	1		r			
3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material	and no	tes, biblio	graphy							7
(b) Supplementary study in the library, online and in the field							3			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							7			
(d) Tutoring										
(e) Exams and tests								2		
(f) Other activities:										
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 19										
3.5 Total hours per semester (3.2+3.4) 75										

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	
4.4 Competence	Basic knowledge in programming languages (C, Java)
	Computer architecture, Operating systems

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Classroom, PC with internet access

6.1 Professional competences	C2: Designing hardware, software and communication components
	C2.1: Describing the structure and functioning of computational, communication
	and software components and systems
	C2.2: Explaining the role, interaction and functioning of hardware, software and
	communication components
	C2.3: Building the hardware and software components of some computing
	systems using algorithms, design methods, protocols, languages, data structures,

	and technologies
	C2.4: Evaluating the functional and non-functional characteristics of the
	computing systems using specific metrics
	C2.5 : Implementing hardware, software and communication systems
6.2 Cross competences	N/A

7.1 General objective	Teamwork, working with partial and contradicting specifications
7.2 Specific objectives	Each student able to design LAN's software & hardware architecture

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction. Concepts, network types, characteristics, evolution, standards	2		
ISO-OSI Reference model and Internet's TCP/IP protocol stack.			
OSI abstract model presentation, description of protocol functions for every layer. General presentation for TCP/IP protocol stack	2		
Data transmission techniques. Data transmission concepts, analog and digital transmission techniques, coding, communication channels	2		
Types of computer networks. Architectures, evolution, topologies, physical parameters	2		
Physical level. Transmission media, characteristics, performances, connectors, structured cabling system	2	Oral Presentations using	
Medium access control. Medium access techniques for local (wired and wireless) and wide area networks	2	multimedia means Q & A	
Data Link level. Functions, problems, protocols, case study: HDLC	2	Interactive teaching	
Local Area Computer Networks. Fundamentals, architectures, evolution	2		
Local Area Computer Networks. Systems, performances	2		
Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers	2		
Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution protocol. Routing protocols	2		
Transport level protocols. TCP protocol; congestion control. TCP and UDP sockets	2		
General introduction to Internet applications. File transfer. Electronic mail, multimedia transmissions, network management	2		

Bibliography

- 1. V.Dadarlat, E.Cebuc Reţele Locale de Calculatoare de la cablare la interconectare, Editura Albastra (Microinformatica), Cluj, 2006, ISBN 973-650-161-2
- 2. W. Stallings, Data and Computer Communications; Prentice Hall, 2004-2014
- 3. A. Tanenbaum Computer Networks, Prentice Hall, 2005- 2010 (A. S. Tanenbaum, Reţele de Calcultoare; Agora Press)

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Cooper based transmission media and UTP cabling	2		
Optical fibers and components	2		
Structured Cabling	2	Dunatical avancies	
Medium Access Methods	2	Practical exercises	
Connectivity to Network: IPv4 subnets and basic router configuration	2	Brief presentation of possible solutionsSelf testing programmes	
Connectivity to Network: DHCP and IPv4 static routing	2	Jen testing programmes	
Connectivity to Network: IPv6 introduction and static routing	2		
Transport layer: TCP/UDP and Network Programming using Socket	2		

Wireshark – network analysis	2	
VLAN and inter-VLAN routing	2	
Wireless LAN	2	
Spanning-tree protocol	2	
Port link aggregation: Etherchannel	2	•
Lab exam	2	

Bibliography

Notes & lab notes available at: ftp.utcluj.ro

- 1. V.Dadarlat, E.Cebuc Reţele Locale de Calculatoare de la cablare la interconectare, Editura Albastra (Microinformatica), Cluj, 2006, ISBN 973-650-161-2
- 2. W. Stallings, Data and Computer Communications; Prentice Hall, 2004-2014
- 3. A. Tanenbaum Computer Networks, Prentice Hall, 2005- 2010 (A. S. Tanenbaum, Rețele de Calcultoare; Agora Press)
- 4. https://moodle.cs.utcluj.ro/

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Course content is kept state of the art by using latest protocols and devices available on the market.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Interactivity and initial preparation, intermediary and final written examinations	Written exam (2,5 h).	70%
Seminar			
Laboratory	Quality of practical work, participation	Continuous assessment, final written colloquium	30%
Project			

Minimum standard of performance:

Grade calculus: 30% laboratory + 70% final exam

Conditions for participating in the final exam: Laboratory ≥ 5

Conditions for promotion: grade ≥ 5

Course responsible Prof.dr.eng. Vasile Dadarlat

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	40.

2. Data about the subject

2.1 Subject name			Image	Image processing			
2.2 Course responsible/led	turer	rer Prof dr. eng. Sergiu Nedevschi (Sergiu.Nedevschi@cs.utcluj.ro)					
2.3 Teachers in charge of s	emina	ars/	Assoc. Prof. dr. eng. Florin Oniga, Assist. Prof. dr. eng. Ion Giosan, Assist. Prof. dr.			Prof. dr.	
laboratory/ project		eng. Raluca Brehar, {Florin.Oniga, Ion.Giosan, Raluca.Brehar}@cs.utcluj.ro			o		
2.4 Year of study	III	2.5 Sem	nester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E		
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară			DD				
2.7 Subject category DI – Impusă, L		00р – ор	p – opțională, DFac – facultativă				

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars		Laboratory	2	Project	1
3.2 Number of hours per semester	70	of which:	Course	28	Seminars		Laboratory	28	Project	14
3.3 Individual study:										
(a) Manual, lecture material	and no	tes, biblio	graphy							14
(b) Supplementary study in the library, online and in the field						3				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10			
(d) Tutoring								0		
(e) Exams and tests							3			
(f) Other activities:						0				
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 30										
3.5 Total hours per semester (3.2+3.4) 100										

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	N/A
4.5 Competence	Computer programming (C++), Data structures and algorithms, Linear Algebra,
	Numerical methods, Special mathematics.

5. Requirements (where appropriate)

5.1. For the course	Blackboard, video projector, computer
5.2. For the applications	Workstations, specific software (Visual Studio, Diblook)

6.1 Professional competences	C6 - Designing intelligent systems
	C6.1 - Describing the components of intelligent systems
	C6.2 - Using domain-specific tools for explaining and understanding the
	functioning of intelligent systems
	C6.3 - Applying the fundamental methods and principles for specifying solutions
	for typical problems using intelligent systems
	C6.4 - Choosing criteria and methods for the evaluation of quality, performances
	and limitations of information systems

	C6.5 - Developing and implementing professional projects for intelligent systems
6.2 Cross competences	N/A

7.1 General objective	Understanding the concepts related to digital images, computer vision and image processing. Learning and applying image processing methods, and designing specific applications.
7.2 Specific objectives	 Learning, evaluation and use of image processing specific concepts, algorithms and methods: digital image formats, camera model, statistical analysis, image filtering, image enhancing and restauration, segmentation, measurement. Acquiring the capacity of finding optimal solutions for image processing algorithm implementation, taking into consideration time and hardware constraints. Acquiring the capacity of quantitative and qualitative assessement of results, algorithms and systems for image processing. Learning the use of programming tools and image processing frameworks (Diblook, MS MFC, OPEN CV)

8. Contents

8. Contents			
8.1 Lectures	Hours	Teaching methods	Notes
Computer vision and its applications. Structure and functionality of computer vision systems. Image acquisition systems.	2		
Camera model, the image formation process, coordinate transforms, calibration.	2		
Fundamentals of stereovision, stereo configurations, depth computation, epipolar geometry.	2	<u>.</u>	
Binary image processing: Simple Geometric Properties	2	Interactive teaching,	
Binary image processing: Labeling, Contour Tracing, Polygonal Approximation	2	using oral presentations	
Binary image processing: Mathematical Morphology	2	supported by	
Grayscale image processing. Statistical properties. Image quality enhancement.	2	multimedia tools, consultations, involving	
Grayscale image processing: Convolution and Fourier Transform	2	students in research and development	
Grayscale image processing: Noise in images	2	- activities.	
Grayscale image processing: Digital filtering.	2	detivities.	
Grayscale image segmentation: Edge based segmentation	2		
Grayscale image processing: Advanced methods for edge extraction and linking.	2		
Grayscale image processing: Textures.	2		
Image region segmentation using intensity, color and texture features.	2		

Bibliography

- 1. R. C. Gonzales, R. E. Woods, "Digital Image Processing-Second Edition", 3rd Edition, *Prentice Hall, 2008*
- 2. R. C. Gonzalez, R. E. Woods, S. L. Eddins, "Digital Image Processing Using MATLAB", 2nd ed., *Gatesmark Publishing*,
- 3. E. Trucco, A. Verri, "Introductory Techniques for 3-D Computer Vision", *Prentice Hall, 1998*.
- 4. G. X.Ritter, J.N. Wilson, "Handbook of computer vision algorithms în image algebra", CRC Press, 2001.
- 5. S. Nedevschi, T. Marita, R. Danescu, F. Oniga, R. Brehar, I. Giosan, S. Bota, A. Ciurte, V. Andrei, Image Processing Laboratory Guide, *UTPRES*, Cluj-Napoca, 2016

Online

1. S. Nedevschi, "Prelucrarea imaginilor - Note de curs", ftp.utcluj.ro/pub/users/nedevschi/IP 2016/

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Laboratory			
Getting started with the DIBLook framework	2	Presentation using the	
The color model. Color-grayscale and grayscale-black&white conversions	2	blackboard and multimedia tools.	

The histogram of intensity levels	2		
Geometrical features of binary objects	2	Experiments and	
Binary objects labeling	2	implementation using	
Border tracing algorithm.	2	specific software tools	
Morphological operations on binary images	2	(MS Visual Studio,	
Statistical properties of grayscale images	2	Diblook)	
Image filtering in the spatial and frequency domains	2	1	
Noise modeling and digital image filtering	2	Evaluation of the	
Edge detection (1)	2	design and	
Edge detection (2)	2	implementation	
Region-based image segmentation	2	phases.	
Evaluation	2	1	
Project		1	
Choosing and discussing the project subject (weeks 1 and 2).	1	1	
Discussing the literature study and the work schedule (weeks 3 and	1]	
4).	1		
Algorithm design (weeks 5 and 6)	1		
Presentation of algorithm implementation. Intermediary evaluation	1		
(weeks 7 and 8).	1		
Algorithm testing and validation. Quantitative and qualitative	1		
evaluation (weeks 9 and 10).	1		
Algorithm optimization (weeks 11 and 12).	1		
Final project assessment (weeks 13 and 14).	1		•
Ribliography		·	·

Bibliography

1. S. Nedevschi, T. Marita, R. Danescu, F. Oniga, R. Brehar, I. Giosan, S. Bota, A. Ciurte, V. Andrei, "Image Processing – Laboratory Guide", *UTPRES*, Cluj-Napoca, 2016

Online

http://users.utcluj.ro/~igiosan/teaching_ip.html

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The subject is part of the Computer Science and Information Technology curriculum, its contents combining fundamental and practical aspects used in the field of visual information processing (an ever growing domain). The subject content is correlated with the specific curricula of other Universities, in Romania and abroad, and is evaluated by government agencies (CNEAA and ARACIS). The subject's activities are meant to make the students familiar with the applications and the research directions of the image processing field, helped by the internationally renowned experience of the teachers.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Testing the theoretical knowledge acquired, and the practical abilities of problem solving.	Written exam	50%
Seminar			
Laboratory	Testing the practical abilities of designing	Lab assessment, project	
Project	and implementing solutions to specific problems. Attendance and activity.	assessment	50%

Minimum standard of performance:

Modeling and implementation of solutions to specific engineering problems, using the domain's formal apparatus.

Grade calculus: 25% laboratory + 25% project + 50% final exam

Conditions for participating in the final exam: Laboratory ≥ 5 , Project ≥ 5

Conditions for promotion: final exam ≥ 5

Course responsible Prof. dr. ing. Sergiu Nedevschi

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	41.

2. Data about the subject

2.1 Subject name			Softwo	Software design		
2.2 Course responsible/lec	Course responsible/lecturer Prof.dr.eng. Mihaela Dinsoreanu – <u>mihaela.dinsoreanu@cs.utcluj.ro</u>					
2.3 Teachers in charge of s	emina	minars/ Prof.dr.eng. Mihaela Dinsoreanu				
laboratory/ project						
2.4 Year of study	Ш	III 2.5 Semester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E		
2.7 Cubicat actors	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară		DS			
2.7 Subject category DI – Impusă, L		00р – ор	oțion	ală, DFac – facultativă	DI	

3. Estimated total time

E									
3.1 Number of hours per week	5	of which:	Course	2	Seminars	Laboratory	2	Project	1
3.2 Number of hours per semester	70	of which:	Course	28	Seminars	Laboratory	28	Project	14
3.3 Individual study:									
(a) Manual, lecture material	and no	tes, biblio	graphy						10
(b) Supplementary study in t	he libr	ary, online	and in th	ne fiel	ld				5
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						6			
(d) Tutoring						4			
(e) Exams and tests						5			
(f) Other activities:									
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 30									
3.5 Total hours per semester (3.2+3.4)									

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Programming Techniques, Software Engineering
4.6 Competence	

5. Requirements (where appropriate)

5.1. For the course	Video projector (compulsory), internet connected computer (optional)
5.2. For the applications	16 internet connected computers

6.1 Professional competences	C3 - Problem solving using specific Computer Science and Computer Engineering tools C3.1 Identifying classes of problems and solving methods that are specific to computing systems C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 Applying solution patterns using specific engineering tools and methods C3.4 Evaluating, comparatively and experimentally, the available alternative
	solutions for performance optimization

	C3.5 Developing and implementing software solutions for specific problems
6.2 Cross competences	N/A

7.1 General objective	Understand and model requirements, analyse and design appropriate solutions
7.2 Specific objectives	 Identify the most relevant functional and non-functional requirements of a software system and to document them Design and motivate software architecture for (large scale) software systems Recognize and apply major software architectural styles, design patterns, and frameworks Describe a software architecture using various documentation approaches
	and architectural description languages
	 Generate architectural alternatives for a problem and select among them

8. Contents

o. contents			
8.1 Lectures	Hours	Teaching methods	Notes
Introduction and basic concepts review	2		
Architectural Styles (Structural)	2		
Architectural Styles (Distributed)	2		
Business logic architectural patterns	2		
Data Access and hybrid architectural patterns	2		
Presentation and Concurrency architectural patterns	2		
Midterm exam	2	Face-to-Face lecture,	
Applying Creational Design Patterns	2	Powerpoint slides	
Applying Structural Design Patterns	2		
Applying Behavioral Design Patterns	2		
Class Design Principles (SOLID, GRASP)	2		
Package design Principles	2		
Service oriented architectures	2		
Software Design Quality metrics and final review	2		

Bibliography

- 1. Ian Gorton, Essential Software Architecture, Springer, second ed. 2011.
- 2. Taylor, R., Medvidovic, N., Dashofy, E., Software Architecture: Foundations, Theory, and Practice, 2010, Wiley.
- 3. Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, 3rd edition, 2013.
- 4. David Patterson, Armando Fox, Engineering Long-Lasting Software: An Agile Approach Using SaaS and Cloud Computing, Alpha Ed.
- 5. Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sornmerlad, and Michael Stal. 2001. Pattern-oriented system architecture, volume 1: A system of patterns. Hoboken, NJ: John Wiley & Sons. [POSA book]
- 6. Fowler Martin, Patterns of Enterprise Application Architecture, Addison-Wesley Professional, 2002.
- 7. Course materials published at https://users.utcluj.ro/~dinso/PS2017

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Revision exercises (OOP, UML, testing techniques)	2		
Database connections and operations	2		
Architectural styles exercises	2		
Assignment 1 presentation and discussion	2		
Assignment 1 progress and discussion	2		
XML basics - exercises	2		
Design patterns exercises	2	Face-to-Face tutoring,	
Assignment 2 presentation and discussion	2	additional materials	
Assignment 2 progress and discussion	2		
Class design principles exercises	2		
Package design principles exercises	2		
Assignment 3 presentation and discussion	2		
Assignment 3 progress and discussion	2		
Assignments catch-up session	2		

Bibliography

Course materials published at https://users.utcluj.ro/~dinso/PS2017

Java tutorial - docs.oracle.com/javase/tutorial/

C# tutorial – msdn.microsoft.com

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

ACM Curriculum compliant course

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Ability to understand requirements, analyse alternative solutions and design an appropriate solution	Written exam	60%
Seminar			
Laboratory	Analyse requirements and alternative solutions, design an appropriate solution and implement it in either java or C#.	Periodic presentations of the required deliverables	40%
Project			

Minimum standard of performance:

Grade calculus: 20% lab + 20% project + 60% final exam

Conditions for participating in the final exam: Lab ≥ 5 , Project ≥ 5

Conditions for promotion: final exam ≥ 5

Course responsible Prof.dr.eng. Mihaela Dinsoreanu

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectuluis

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	42.

2. Data about the subject

2.1 Subject name			Intellig	ntelligent systems			
2.2 Course responsible/lecturer			Prof. d	rof. dr. eng. Leţia Ioan Alfred – Ioan.Alfred.Letia@cs.utcluj.ro			
2.3 Teachers in charge of seminars/			Assoc.	Assoc.prof. dr. eng. Razvan Slăvescu – Razvan.Slavescu@cs.utcluj.ro			
laboratory/ project			Assoc.	Assoc.prof. dr. eng. Anca Marginean – Anca.Marginean@cs.utcluj.ro			
2.4 Year of study	III	III 2.5 Semester		2	2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E	
DF – fundame			ntală, D	DD — î	în domeniu, DS – de specialitate, DC – complementară	DS	
2.7 Subject category	DI – I	mpusă, [00p – o _l	oțion	ală, DFac – facultativă	DI	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars	Laboratory	28	Project	
3.3 Individual study:									
(a) Manual, lecture material	and no	tes, biblio	graphy						18
(b) Supplementary study in the library, online and in the field									5
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								10	
(d) Tutoring								6	
(e) Exams and tests								5	
(f) Other activities:									0
3.4 Total hours of individual study	(suma	(3.3(a)3.:	3(f)))		44				
3.5 Total hours per semester (3.2+3	3 4)				100				

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Logic Programming, Functional Programming
4.7 Competence	Fundamentals of Computer Programming

5. Requirements (where appropriate)

5.1. For the course	Projector, Computer
5.2. For the applications	Computers with Linux, Specific Software

6.1 Professional competences	C6 – Design of intelligent systems (4 credits) C6.1 – Describing the components of intelligent systems C6.2 – Usage of specific instruments of the domain for explaining and understanding the functioning of intelligent systems C6.3 – Application of principles and basic methods for the specification of solutions typical problems using intelligent systems C6.4 – Choosing criteria and methods for the evaluation of quality, performance and limits of intelligent systems
	and limits of intelligent systems C6.5 – Development and implementation of professional designs for intelligent

	systems
6.2 Cross competences	N/A

7.1 General objective	Knowledge of representation and reasoning of fundamental problems of intelligent systems
7.2 Specific objectives	Fundamental methods for basic representations in intelligent systems: uncertainty, learning, communication

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction.	2		
Uncertainty: inference using full joint distributions, Bayes' rule and its use.	2		
Probabilistic Reasoning: semantics of Bayesian networks, efficient representation, exact inference, approximate.	2		
Probabilistic Reasoning over Time: hidden Markov models, dynamic Bayesian networks.	2		
Making Simple Decisions: utility functions, decision networks, value of information.	2		
Making Complex Decisions: value iteration, policy iteration, partially observable MDPs, game theory.	2	Slides, Algorithms, Quality of solutions,	
Learning from Observations: learning decision trees, ensemble learning.	2	Exceptions, Limits in the	
Knowledge in Learning: explanation-based, relevance information, inductive logic programming.	2	representation of the real world	
Statistical Learning Methods: hidden variables, instance-based, neural networks, kernel machines.	2		
Reinforcement Learning.	2		
Association analysis: frequent itemset generation, rule generation, compact representation of frequent itemsets, alternative methods of generating frequent itemsets, FP-growth algorithm.	2		
Communication: syntactic analysis, semantic interpretation.	2		
Perception, representation and action in multi-agent systems.	2		
Overview on Intelligent Systems: Present and Future.	2		

Bibliography

- 1. Artificial Intelligence: A Modern Approach: Russell, Norvig, Prentice Hall, 2002
- 2. Tan, Steinbach, Kumar: Data Mining: Association Analysis, 2004

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction to the documentation for the assignment	2		
Studying the documentation for the assignment	2		
Studying the design of the tool	2		
Practicing the exercises provided in the archive	2		
Understanding the main parts of the software	2		
Running the system by tracing at high level	2		
Mastering the running of the system and the examples provided	2	Platform,	
Conceptual design of new examples	2	Documentation,	
Code for the new examples	2	Testing, Examples, New examples	
Testing and debugging the new cases	2	1 New examples	
Measuring the performance of the system	2		
Documenting the new scenarios	2		
Comparison of the differences between the cases developed and those provided	2		
Final evaluation of the exercises developed	2		

Bibliography

1. Various Intelligent Systems Tools from the WWW.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course outline represents the most known and used one in the world methods for intelligent systems, continuously assessed by the research community in the world regarding its influence and use in software technology.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Problems and theoretical concepts	Written exam	80%
Seminar			
Laboratory	Usage of specific tools on the examples developed and tested by the students	Evaluation in the laboratory	20%
Project			

Minimum standard of performance:

Representation of knowledge and its use in solving specific intelligent systems problems using specific tools.

Grade calculus: 20% laborator + 80% examen final

Conditions for participating in the final exam: Laborator ≥ 5

Conditions for promotion: grade ≥ 5

Course responsible Prof. dr. eng. Leţia Ioan Alfred

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	43.

2. Data about the subject

2.1 Subject name		Practio	Practical work in the domain of study					
2.2 Course responsible/lecturer		Assoc.	Assoc. prof. dr. eng. Tiberiu Marita					
2.3 Teachers in charge of seminars/ laboratory/ project		Sl.dr.ir dr.ing. Conf. o	Internship supervisors appointed by the faculty: Sl.dr.ing. Marcel Antal, Asist.drd.ing. Claudia Pop, Asist.dr.ing. Itu Razvan, S.l. dr.ing.Kinga Marton, S.l. dr.ing. Anca Hangan, Conf.dr.ing.Camelia Lemnaru, Conf. dr. ing Adrian Groza, Conf.dr.ing. Victor Bacu, S.l.dr.ing. Raluca Brehar, Conf. dr. ing. Tiberiu Marita					
2.4 Year of study III 2.5 Sem			ester	2	2.6 Type of assessment (E - exam, C - colloquium, V - verification)	V		
DF – fundame		entală, DD – în domeniu, DS – de specialitate, DC – complementară			DD			
2.7 Subject category	DI – I	Impusă, L	00p – o _l	pțion	țională, DFac – facultativă D			

3. Estimated total time

3.1 Number of hours per week	15	of which:	Course	-	Seminars	-	Laboratory	-	Project	15
3.2 Number of hours per semester	90	of which:	Course	-	Seminars	1	Laboratory	-	Project	90
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography										
(b) Supplementary study in the library, online and in the field										
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays										
(d) Tutoring										
(e) Exams and tests										
(f) Other activities:										10
0.4 = 1.11	,	(0.0/) 0.	2 (()))		4.0					

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	10
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	N/A
4.8 Competence	N/A

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	N/A

6.1 Professional competences	C2 Designing hardware, software and communication components (2 credits) C2.1 Describing the structure and functioning of computational, communication and software components and systems
	C2.2 Explaining the role, interaction and operation of hardware, software and communication components

	C3 Problems solving using specific Computer Science and Computer Engineering tools (2 credits) C3.1 Identifying classes of problems and solving methods that are specific to computing systems C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results
	C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits) C5.1 Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator C5.2 Using interdisciplinary knowledge for adapting an information system to application domain requirements C5.3 Using fundamental principles and methods for security, reliability and usability assurance of computing systems C5.4 Adequate utilization of quality, safety and security standards in information processing
6.2 Cross competences	CT1 - Honorable, responsible, ethical behavior in the spirit of the law to ensure the reputation of the profession CT2 Identifying, describing and conducting processes in the projects management field, assuming different roles inside the team and clearly and concisely describing, verbally or in writing, in Romanian and in an international language, the results from the activity field. (2 credits)

7.1 General objective	Application of fundamental and applied knowledge gained in the projects development within a specialized company or research team (theme set by the project manager)
7.2 Specific objectives	Acquaintance of the students with the methodologies and technologies specific to the design and implementation activities and involve the students in carrying out simple hardware / sofware / communications projects for educational purposes: - participation in training courses and activities organized by the company or the research group to which the practice is carried out - analysis and documentation - the study and familiarization with the specific design and implementation tools - designing, implementing, testing and validating some simple projects / modules with educational role

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
OII ECOCATED	110013		
Bibliography			
-			
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
study and documentation			
 study of methodologies and / or technologies used 			
• implementation, testing and validation of some simple		N/A	
components / modules for educational purposes			
 documentation of the implemented components 			

Bibliography

For the project development, the draft bibliography is the one recommended by the project leader from the company or by the research team at which the implementation is performed and the one resulted in the documenting phase.

 $^{^*}$ Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline provides education and training of the students at the workplace site, with benefits for both sides. Students are familiarized with the working and professional requirements needed to work in a company, and companies have the opportunity to shape students to facilitate their employment after graduation (to reduce training expenses / training). Also it aims to increase cohesion between academia and employment in a priority area in terms of national and European level in order to improve the skills of employees and to prepare and maintain them in the labor market in a particularly dynamic and competitive domain (mainly existing competition with Eastern European countries and Asia - India and China).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade						
Course	N/A	N/A	N/A						
Project	Attendance (min 100 h), activity, tutor assessment	Colloquy	100%						
Minimum standard of performance: Development of a hardware / software / communication engineering project.									

Course responsible Assoc.prof.dr.eng. Tiberiu Marita

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	44.

2. Data about the subject

2.1 Subject name Prac			Practio	Practical work in the specialization							
2.2 Course responsible/lecturer			Assoc. prof. dr. eng. Tiberiu Marita								
2.3 Teachers in charge of seminars/ laboratory/ project		Sl.dr.in dr.ing. Conf. o	Internship supervisors appointed by the faculty: Sl.dr.ing. Marcel Antal, Asist.drd.ing. Claudia Pop, Asist.dr.ing. Itu Razvan, S.l. dr.ing.Kinga Marton, S.l. dr.ing. Anca Hangan, Conf.dr.ing.Camelia Lemnaru, Conf. dr. ing Adrian Groza, Conf.dr.ing. Victor Bacu, S.l.dr.ing. Raluca Brehar, Conf. dr. ing. Tiberiu Marita								
2.4 Year of study III 2.5 Sem			ester	ester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)							
DF – fundame		entală, DD – în domeniu, DS – de specialitate, DC – complementară									
2.7 Subject category	DI – Impusă, DOp – opțională, DFac – facultativă										

3. Estimated total time

3.1 Number of hours per week	15	of which:	Course	-	Seminars	-	Laboratory	-	Project	15
3.2 Number of hours per semester	90	of which:	Course	-	Seminars	1	Laboratory	-	Project	90
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography										
(b) Supplementary study in the library, online and in the field										
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays										
(d) Tutoring										
(e) Exams and tests										
(f) Other activities:										10
0.4 = 1.11		(0.0/) 0.	2 (()))		4.0					•

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	10
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	N/A
4.9 Competence	N/A

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	N/A

6.1 Professional competences	C2 Designing hardware, software and communication components (2 credits)
	C2.3 Construction of hardware and software components of computing systems
	using design methods, languages, algorithms, data structures, protocols and
	technologies
	C2.4 Metric based evaluation of functional and non-functional characteristics of
	computing systems

	C2.5 Implementation of hardware, software and communication components
	C3 Problems solving using specific Computer Science and Computer Engineering tools (2 credits)
	C3.3 Applying solution patterns using specific engineering tools and mehods
	C3.4 Comparatively and experimentaly evaluation of the alternative solutions for performance optimization
	C3.5 Developing and implementing informatic solutions for concrete problems
	C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity
	of hardware, software and communication systems (2 credits)
	C5.5 Creating a project including the problem's identification and analysis, its
	design and development, also proving an understanding of the basic quality requirements
6.2 Cross competences	CT1 - Honorable, responsible, ethical behavior in the spirit of the law to ensure
	the reputation of the profession
	CT2 Identifying, describing and conducting processes in the projects
	management field, assuming different roles inside the team and clearly and
	concisely describing, verbally or in writing, in Romanian and in an international language, the results from the activity field. (2 credits)

7.1 General objective	Application of fundamental and applied knowledge gained in the projects development within a specialized company or research team (theme set by the project manager)
7.2 Specific objectives	Acquaintance and student involvement in every development stage of a hardware / software / communication project and connected aspects of design activities: - Design, implementation, testing and validation of the project - Preparation of documentations, technical reports - Team work and communication skills - Project management activities

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
-			
Bibliography			
-			
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
 analysis of the product preparation of the project specifications implementation and deployment of the hardware or software system product testing and validation product documenting 		N/A	

Bibliography

For the project development, the draft bibliography is the one recommended by the project leader from the company or by the research team at which the implementation is performed and the one resulted in the documenting phase.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline provides education and training of the students at the workplace site, with benefits for both sides. Students are familiarized with the working and professional requirements needed to work in a company, and companies have the opportunity to shape students to facilitate their employment after graduation (to reduce training expenses / training). Also it aims to increase cohesion between academia and employment in a priority area in terms of national and

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

European level in order to improve the skills of employees and to prepare and maintain them in the labor market in a particularly dynamic and competitive domain (mainly existing competition with Eastern European countries and Asia - India and China).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade				
Course	N/A	N/A	N/A				
Project	Attendance (min 100 h), activity, tutor	Colloquy	100%				
assessment							
Minimum standard of performance:							
Development of a hardware / software / communication engineering project.							

Course responsible Assoc.prof.dr.eng. Tiberiu Marita

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	111.

2. Data about the subject

2.1 Subject name			Real ti	Real time systems				
2.2 Course responsible/led	turer	rer Prof. Tiberiu Letia; Tiberiu.Letia@aut.utcluj.ro						
2.3 Teachers in charge of s	emina	minars/ Prof. Tiberiu Letia; Tiberiu.Letia@aut.utcluj.ro						
laboratory/ project								
2.4 Year of study	III	III 2.5 Semester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)						
2.7 Cubicat astonomi	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară				DS			
2.7 Subject category DI – Impusă,			00p – op	Op – opțională, DFac – facultativă				

3. Estimated total time

Section 1997										
3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material	and no	tes, biblio	graphy							15
(b) Supplementary study in the library, online and in the field						15				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						15				
(d) Tutoring						0				
(e) Exams and tests						3				
(f) Other activities:					0					
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 48										
3.5 Total hours per semester (3.2+3.4) 104										

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Basic programming Software engineering
	Discrete event systems
4.10Competence	Computer programming

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	

6.1 Professional competences	C2 – Fundamental operation concepts from computer science information and communication technologies C5 Application development, algorithm implementations and control structures using project management principles, programming environment and microcontroller based technologies, DSP, PLC an embedded systems
6.2 Cross competences	N/A

7.1 General objective	
7.2 Specific objectives	

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Real-Time Systems (RTS). Introduction to RTS	2		
Paradigms, basic definitions, RTS characteristics, real-time control, temporal parameters	2		
Specification of real-time applications (RTAs)	2		
Modeling of RTAs using Petri nets	2		
Design of RTAs with Unified Modeling Language	2		
Real-Time operating systems	2	laka na aki sa	
Interprocess communication	2	Interactive, multimedia	
Interrupt handling	2	muitimedia	
Concurrent programming in standard Java	2		
Implementation using Realtime Java	2		
Evaluation and measuring of execution times	2		
Scheduling (tests and verification)	2		
Verification and test of RT implementation	2		
Reliability of RTAs	2		
- u u			

Bibliography

- 1. T. Leția. Sisteme de timp-real. Editura Albastră (Microinformatica), ISBN 973-9443-49-4, 2001 (363 pag.).
- 2. T. Letia, A. Astilean. Sisteme cu evenimente discrete: modelare, analiză și control. Editura Albastră (Microinformatica), Cluj-Napoca, ISBN. 973-9215-76-9, 1998 (228 pag.).
- 3. B. Bărbat, F.G. Filip. Informatică industrială. Ingineria programării în timp-real. Ed. Tehnică, București, 1997.
- 4. J.E. Cooling. Software Design for Real-time Systems. International Thomson Computer Press, London, 1991.
- 5. Alan Burns, A. Wellings. Real-Time Systems and Programming Languages. Addison Wesley, 2001
- 6. A.M.K. Cheng. Real-Time Systems. Scheduling, Analysis and Verification, John Wiley and Sons, 2002
- 7. G. Buttazzo. Real-Time Systems. Predictable Scheduling and Applications. Springer, 2005.
- 8. Bruce Powel Douglass. Real-Time UML. Third Edition. Advances in The UML for Real-Time Systems. Ed. Addison-Wesley. 2007.
- 9. E.J.Brubo şi Greg Bollella. Real Time Java Programming with Java RTS. Sun Micorsystems, 2009.
- 10. B.P. Douglass. Real Time UML Third Edition. Advances in the UML for Real-Time Systems. Addison-Wesley, 2007
- 11. A.M.K. Cheng. Real-Time Systems Scheduling, Analysis, and Verification. Ed. Wiley Interscience, JohnWiley and Sons, 2002.
- 12. G.C. Buttazzo. Hard Real-Time Computing. Predictable Scheduling Algorithms and Application. Second Edition. Ed. Springer. 2005.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
L1. Introduction – Tool and development environment	2		
L2. Threads in Java SE – General concepts	2		
L3. Threads in Java SE – Classic synchronization mechanisms	2		
L4. Applications with threads in Java SE – Petri nets and Time Petri nets implementations and tests using classic synchronization mechanisms	2		
L5. Threads in Java SE – Package java.util.concurent - Part 1	2		
L6. Threads in Java SE – Package java.util.concurent - Part 2	2		
L7. Applications with threads in Java SE - Petri nets and Time Petri nets implementations and tests using synchronization mechanisms from the package java.util.concurrent	2	Interactive	
L8. Real-Time Java – Introductory notions	2		
L9. Clocks and timings in Real-Time Java	2		
L10. Real time threads	2		
L11. Applications with RT Java threads	2		
L12. Memory management in Real-Time Java	2		
L13. Compensatory activities	2		

L14. Final test -

Bibliography

- 1. T. Leţia. Sisteme de timp-real. Editura Albastră (Microinformatica), ISBN 973-9443-49-4, 2001 (363 pag.).
- 2. T. Letia, A. Astilean. Sisteme cu evenimente discrete: modelare, analiză și control. Editura Albastră (Microinformatica), Cluj-Napoca, ISBN. 973-9215-76-9, 1998 (228 pag.).
- 3. B. Bărbat, F.G. Filip. Informatică industrială. Ingineria programării în timp-real. Ed. Tehnică, București, 1997.
- 4. J.E. Cooling. Software Design for Real-time Systems. International Thomson Computer Press, London, 1991.
- 5. Alan Burns, A. Wellings. Real-Time Systems and Programming Languages. Addison Wesley, 2001
- 6. A.M.K. Cheng. Real-Time Systems. Scheduling, Analysis and Verification, John Wiley and Sons, 2002
- 7. G. Buttazzo. Real-Time Systems. Predictable Scheduling and Applications. Springer, 2005.
- 8. Bruce Powel Douglass. Real-Time UML. Third Edition. Advances in The UML for Real-Time Systems. Ed. Addison-Wesley. 2007.
- 9. E.J.Brubo şi Greg Bollella. Real Time Java Programming with Java RTS. Sun Micorsystems, 2009.
- 10. B.P. Douglass. Real Time UML Third Edition. Advances in the UML for Real-Time Systems. Addison-Wesley, 2007
- 11. A.M.K. Cheng. Real-Time Systems Scheduling, Analysis, and Verification. Ed. Wiley Interscience, JohnWiley and Sons, 2002.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Midterm exam Final exam The grade for the midterm exam (M); The grade for the final exam (F)	written examination 2 hours written examination 3 hours	0.33 0.33
Seminar			
Laboratory	Laboratory verification (L)		0.33
Project			

Minimum standard of performance:

N=0.33M+0.33F+ 0.33L

Condition to obtain the credits : N≥5; M≥5; F≥5; L≥5

Course responsible Prof.dr.eng. Tiberiu Letia

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	112.

2. Data about the subject

2.1 Subject name			Managementul clasei de elevi				
2.2 Course responsible/lec	2 Course responsible/lecturer Prof dr. Ing Bal Carmen				,		
2.3 Teachers in charge of s	emina	nars/ Prof dr. Ing Bal Carmen				,	
laboratory/ project							
2.4 Year of study	Ш	III 2.5 Semester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)				Е	
2.7 Cubicot cotocom.	DF -	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară DC					
2.7 Subject category DI – Impusă, DOp – opțională, DFac – facultativă				DFac			

3. Estimated total time

		T _	ſ				r - r	r r	
3.1 Number of hours per week	2	of which:	Course	1	Seminars	1	Laboratory	Project	
3.2 Number of hours per semester	28	of which:	Course	14	Seminars	14	Laboratory	Project	
3.3 Individual study:									
(a) Manual, lecture material	and no	tes, biblio	graphy						10
(b) Supplementary study in the library, online and in the field					14				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						17			
(d) Tutoring						3			
(e) Exams and tests						3			
(f) Other activities:					0				
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 47									
3.5 Total hours per semester (3.2+3.4) 75									

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	-
4.11Competence	-

5. Requirements (where appropriate)

5.1. For the course	•	Participare activă			
5.2. For the applications	•	Lectura bibbliografiei recomandate			
	•	Documentare suplimentară			
	•	Elaborarea și susținerea prezentărilor planificate			

6.1 Professional competences	C1: Proiectarea unor programe de instruire sau educaţionale adaptate pentru diverse niveluri de vârstă/pregătire și diverse grupuri ţintă;
	C4 Abordarea managerială a grupului de școlari, a procesului de învăţământ și a activităţilor de învăţare/integrare socială specifice vârstei grupului ţintă
	C6 .Autoevaluarea și ameliorarea continuă a practicilor profesionale și a evoluției în carieră

CT2 Cooperarea eficienta în echipe de lucru profesionale, interdisciplinare, specifice desfasurarii proiectelor si programelor din domeniul stiintelor educatiei; CT4: Promovarea valorilor asociate realizării unui învățământ de calitate, în conformitate cu politicile educaționale interne și în acord cu cele elaborate și popularizate la nivel european, pe baza cunoașterii specificității domeniului educațional european și a interculturalității; CT6 Aplicarea principiilor si a normelor de deontologie profesionala,
fundamentate pe optiuni valorice explicite, specifice specialistului în stiintele educatiei;

7.1 General objective	 Să aplice tehnici eficiente de management al clasei de elevi, în cadrul diferitelor componente ale managementului clasei de elevi;
7.2 Specific objectives	 Să stabilească specificitatea abordării manageriale în procesul de învățământ; Să analizeze componentele managementului clasei de elevi; Să opereze cu conceptele specifice domeniului; Să identifice situațiile de criză educațională încă din faza incipientă, ordonându-le şi clasificându-le în funcție de specificitatea acestora; Să determine soluțiile pertinente pentru diferitele situații de criză educațională; Să-şi perfecționeze stilul managerial propriu.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
1. Obiectul și problematica managementului clasei de elevei. Conceptele de management general, educațional, organizațional – definire și prezentare comparativă;	1	Curs interactiv: - expunerea;	
2. Caracteristicile generale ale conducerii în sistemul de învățământ. Principiile și funcțiile managementului educațional;	1	- prelegerea intensificată; - explicaţia; - conversaţia euristică; - problematizarea; - dezbaterea; - Jigsaw.	
3. Stiluri manageriale ale cadrelor didactice şi climatul şcolii;	1		
4. Clasa ca grup social. Relaţiile educaţionale;	1		
5. Utilitatea cunoașterii clasei ca grup social;	1		
6. Managementul activităților didactice	1		
7. Managementul conflictului în clasa de elevi.	1		
Bibliography			

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
1. Aspecte introductive: prezentarea obiectivelor disciplinei şi a competenţelor vizate, bibliografia, precizarea sarcinilor de seminar, distribuirea temelor şi referatelor	1		
2. Comunicarea la nivelul clasei: tipuri de comunicare, scheme de comunicare. Aplicaţii;	1	- exerciţiul; - studiul de caz;	
3. Metode și tehnici de cunoaștere a grupului școlar: observația științifică	1	- eseul; - problematiza-rea;	
4. Tehnica sociometrică, profilul psihosocial al grupului, autobiografia grupului	1	dezbaterea;jocul de rol	
5. Fişa de caracterizare psihosocială a clasei	1		
6. Managementul conflictului: studii de caz;	1		
7. Negocierea: tehnici de negociere – joc de rol.	1		

Bibliography

- 1. Băban, Adriana Consiliere educațională, Imprimeria Ardealul, Cluj-Napoca, 2001
- 2. Ciot Gabriela Melania Managementul clasei de elevii, UTPRESS Cluj Napoca, 2006.
- 3. Ciascai, Liliana Managementul clasei de elevi. De la teorie la practică, Ed. Casa Cărții de Știință, Cluj-Napoca, 2007
- 4. Honţuş, Dumitru, Honţuş, Adelaida *Managementul clasei de elevi*, Ed. Ceres, Bucureşti, 2008

- 5. lucu, Romiță B. Managementul clasei de elevi, Polirom, Iași, 2006.
- 6. Lemeni, Gabriela., Miclea, Mircea Consiliere și orientare, Ed. ASCR, Cluj-Napoca, 2004
- 7. Joita, Elena- Management educational, Polirom, Iași, 2000.
- 8. Niculescu, Rodica M. A învăța să fii un bun manager, Editura Inedit, Tulcea, 1994.
- Orţan, Florica Management educaţional, Editura Universităţii din Oradea, 2003.
- 10. Păun, Emil *Şcoala abordare sociopedagogică*, Polirom, Iași, 1999.
- 11. Rey, Bernard Faire la classe à l'école élémentaire, ESF Editeur, 4e édition, Issy-les-Moulineaux, 2005.
- 12. Schulman Kolumbus, Elinor Didactică preșcolară, Ediția a II-a, V&I Integral, București, 2000.
- 13. Stan, Emil Managementul clasei, Aramis, București, 2003.
- 14. Stan, Emil Profesorul între autoritate și putere, Teora, București, 1999.
- 15. Ţoca, Ioan Management educaţional, E.D.P., Bucureşti, 2002.
- 16. Cristea, G., Managementul lecției, Editura Didactică și Pedagogică, R.A, București, 2007;
- 17. Ezechil, L., Comunicarea educațională în context școlar, București, E.D.P., 2002;
- 18. lucu, R., Managementul clasei de elevi. Aplicații pentru gestionarea situațiilor de criză educațională, Editura Polirom, Iași, 2006;
- 19. Joita, E., Management educațional: Profesorul-manager. Roluriși metodologie, Editura Polirom, Iași, 2000
- 20. Alois Gherduţ, Managementgeneral şi strategic în educaţie, Ghid practic, Ed. Polirom, Iaşi, 2007.
- 21. Langa C. Tănase M., ionuț B., Elemente de management educațional, Editura Paradigme, 2003
- 22. Nicola, I., Microsociologia colectivului de elevi, Editura Didactică și Pedagogică, București, 1997;
- 23. Loca I., Management educațional, Editura Didactică și Pedagogică, R.A, București, 2007
- 24. Ion Ovidiu Painişoară, Comunicare eficientă, Metode de interacțiune educațională, ed. Polirom Iasi, 2008;
- 25. Potolea, D, Iucu, R., Neacşu, I., Pânişoară, O.,(coord.), Pregătirea psihopedagogică. Manual pentru definitivat şi gradul didactic II, Editura Polirom, Iaşi, 2008;
- 26. Sachelarie, O., Langa, C., Bulgaru, I., Probleme de sociologia educației, Editura universității din Pitești, 2002;
- 27. Schein, R. C., (1985), Organizational Culture and Leaderschip, Jossey Bass, san Francisco;
- 28. Skilbeck, M (1984), School Based Curriculum Develepment, harper and Row, Londra.
- 29. Zlate, M., Zlate, C., Cunoașterea și activarea grupurilor sociale, Editura Politică, București, 1982.
- 30. Vlăsceanu, M., (1993) Psihologia organizațiilor și a conducerii, Ed. Paidela, București;
- 31. Wallace, M., (1991), School Centred management Training, Paul Champan Educational Publishing, Portsmouth;
- 32. Well, M. (1992), Le management strategique, Armand Colin, Paris.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competențele dobândite la absolvirea acestui curs permit absolventului, indiferent de specializare, o gestionare mai eficientă a vieții personale și profesionale, respectiv o inserție productivă pe piața forței de muncă (prin cunoștințele și competențele privind: managementul stresului, al timpului, cunoașterea posibilităților personale și profesionale reale, autodepășire și motivare, comunicare eficientă ș.a.).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Volumul şi corectitudinea cunoştinţelor	Lucrare scrisă	40
	Rigoarea științifică a limbajului	Lucrare scrisă	10
	Organizarea conţinutului	Lucrare scrisă	10
	Originalitatea	Lucrare scrisă	10
Seminar	Susţinerea unui referat	Fişă de evaluare seminar	20
	Participare activă la seminarii	Fişă de evaluare seminar	10
Laboratory			
Project			

Minimum standard of performance:

50% rezultat după însumarea punctajelor ponderate

Course responsible Prof.dr.eng. Carmen Bal

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.