# 1. Data about the program of study

| 1.1 Institution                    | The Technical University of Cluj-Napoca     |
|------------------------------------|---------------------------------------------|
| 1.2 Faculty                        | Faculty of Automation and Computer Science  |
| 1.3 Department                     | Computer Science                            |
| 1.4 Field of study                 | Computer Science and Information Technology |
| 1.5 Cycle of study                 | Bachelor of Science                         |
| 1.6 Program of study/Qualification | Computer science/ Engineer                  |
| 1.7 Form of education              | Full time                                   |
| 1.8 Subject code                   | 1.                                          |

## 2. Data about the subject

| 2.1 Subject name                                       |        |                      | Mathe                                                             | Mathematical Analysis I (Differential calculus)                           |  |   |  |  |
|--------------------------------------------------------|--------|----------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|--|---|--|--|
| 2.2 Course responsible/lecturer                        |        | Prof. d              | Prof. dr. Dumitru Mircea Ivan – <u>mircea.ivan@math.utcluj.ro</u> |                                                                           |  |   |  |  |
| 2.3 Teachers in charge of laboratory/ project          | semina | ars/                 | Prof. dr. Dumitru Mircea Ivan – mircea.ivan@math.utcluj.ro        |                                                                           |  |   |  |  |
| 2.4 Year of study                                      | I      | 2.5 Sem              | ester                                                             | ter 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification) |  | E |  |  |
| DF – fundamentală, DD – în domeniu, DS – de specialita |        |                      | n domeniu, DS – de specialitate, DC – complementară               | DF                                                                        |  |   |  |  |
| 2.7 Subject category  DI – Impusă, D                   |        | 00p – o <sub>l</sub> | Dp — opțională, DFac — facultativă                                |                                                                           |  |   |  |  |

## 3. Estimated total time

| 3.1 Number of hours per week                                                         | 4        | of which:   | Course    | 2       | Seminars | 2  | Laboratory | Project |    |
|--------------------------------------------------------------------------------------|----------|-------------|-----------|---------|----------|----|------------|---------|----|
| 3.2 Number of hours per semester                                                     | 56       | of which:   | Course    | 28      | Seminars | 28 | Laboratory | Project |    |
| 3.3 Individual study:                                                                |          |             |           |         |          |    |            |         |    |
| (a) Manual, lecture material                                                         | and no   | tes, biblio | graphy    |         |          |    |            |         | 20 |
| (b) Supplementary study in t                                                         | he libra | ary, online | and in th | ne fiel | d        |    |            |         | 5  |
| (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays |          |             |           |         |          | 8  |            |         |    |
| (d) Tutoring                                                                         |          |             |           |         |          | 5  |            |         |    |
| (e) Exams and tests                                                                  |          |             |           |         |          | 6  |            |         |    |
| (f) Other activities:                                                                |          |             |           |         |          | 0  |            |         |    |
| 3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 44                         |          |             |           |         |          |    |            |         |    |
| 3.5 Total hours per semester (3.2+3.4) 100                                           |          |             |           |         |          |    |            |         |    |

# 4. Pre-requisites (where appropriate)

3.6 Number of credit points

| 4.1 Curriculum | Basic knowledge of Differential Calculus and Set Theory                          |
|----------------|----------------------------------------------------------------------------------|
| 4.2 Competence | Competences in elementary Differential Calculus: elements of set theory, limits, |
|                | sequences and series, derivatives.                                               |

4

# 5. Requirements (where appropriate)

| 5.1. For the course       | Videoprojector |
|---------------------------|----------------|
| 5.2. For the applications | Videoprojector |

| 6.1 Professional competences | C1 – Operating with basic Mathematical, Engineering and Computer Science concepts                                                                                                               |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | C1.1 - Recognizing and describing specific concepts to calculability, complexity, programming paradigms and modeling of computing and communication systems                                     |
|                              | <b>C1.2</b> - Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems |

|                       | C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed systems |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.2 Cross competences | N/A                                                                                                                                                                                                                                                           |

| 7.1 General objective   | A presentation of the concepts, notions, methods and fundamental techniques used in differential calculus.                                                                         |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.2 Specific objectives | Use of the differential calculus in order to solve problems in engineering. Use of the differential calculus in modelling and solving practical problems concerning spatial forms. |

### 8. Contents

| 8.1 Lectures                                                                                                                                                                                                                                                                                                                     | Hours | Teaching methods             | Notes |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------|-------|
| Elements of Set Theory. Set operations. Functions. Cardinal numbers.                                                                                                                                                                                                                                                             | 2     |                              |       |
| General Topology. Topologies and topological spaces. Open and closed sets. Neighbourhoods. Interior and closure of a set. Limit points.                                                                                                                                                                                          | 2     |                              |       |
| Metric. Topology of a metric space. Sequences in metric spaces.                                                                                                                                                                                                                                                                  | 2     |                              |       |
| Sequences of Numbers. Stolz-Cesaro criterion.                                                                                                                                                                                                                                                                                    | 2     |                              |       |
| Series of Numbers. Convergence tests for series. Infinite products.                                                                                                                                                                                                                                                              | 2     |                              |       |
| Continuity. Continuous mappings on topological, metric and Euclidean spaces.                                                                                                                                                                                                                                                     | 2     | Explanation                  |       |
| Differential Calculus for Functions of One Variable. Mean-value theorems. Taylor's formula for real functions of one variable.  Differential of functions of one variable.                                                                                                                                                       | 2     | Demonstration  Collaboration |       |
| Differential Calculus for Functions of Several Variables. Partial derivatives. Derivative of composite functions. Homogeneous functions. Euler's identity. Gradient. Directional derivative. Lagrange's mean value theorem. Differential of functions of several variables. Taylor's formula for functions of several variables. | 6     | Interactive activities       |       |
| Functional Sequences and Series. Power series. Trigonometric and Fourier series.                                                                                                                                                                                                                                                 | 4     |                              |       |
| Implicit Functions. Existence theorems for implicit functions. Change of coordinates and variables.                                                                                                                                                                                                                              | 2     |                              |       |
| Extrema of Functions. Unconditional and conditional extrema.                                                                                                                                                                                                                                                                     | 2     |                              |       |

- 1. Mircea Ivan. Elemente de calcul integral. Mediamira, Cluj-Napoca, 2003.
- 2. Dumitru Mircea Ivan. Calculus. Editura Mediamira, Cluj-Napoca, 2002.

| 8.2 Applications – Seminars/Laboratory/Project                            | Hours | Teaching methods       | Notes |
|---------------------------------------------------------------------------|-------|------------------------|-------|
| Exercises related to: set operations, functions, cardinal numbers.        | 2     |                        |       |
| Exercises related to: topologies, open and closed sets,                   | 2     |                        |       |
| eighbourhoods, interior and closure of a set.                             | 2     |                        |       |
| Example of metrics with application in engineering.                       | 2     | Explanation            |       |
| Exercises related to sequences of numbers.                                | 2     |                        |       |
| Exercises concerning convergence tests for series.                        | 2     | Demonstration          |       |
| Exercises related to continuous mappings.                                 | 2     |                        |       |
| Exercises concerning mean-value theorems and Taylor's formula for         | 2     | Collaboration          |       |
| real functions of one variable.                                           | 2     |                        |       |
| Exercises related to: partial derivatives, derivative of composite        |       | Interactive activities |       |
| functions, gradient, directional derivative, differential of functions of | 6     |                        |       |
| several variables, Taylor's formula for functions of several variables.   |       |                        |       |
| Exercises related to power and Fourier series.                            | 4     |                        |       |

| Exercises related to implicit functions, change of coordinates and variables. | 2 |
|-------------------------------------------------------------------------------|---|
| Exercises concerning unconditional and conditional extrema.                   | 2 |

- Dumitru Mircea Ivan, et al. Analiză matematică Culegere de probleme pentru seminarii, examene și concursuri. Editura Mediamira, Cluj-Napoca, 2002.
- Mircea Ivan et al. Culegere de Probleme Pentru Seminarii, Examene şi Concursuri. UT Press, Cluj-Napoca, 2000.

# 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

### 10. Evaluation

| Activity type                    | Assessment criteria                                                     | Assessment methods  | Weight in the final grade |  |  |
|----------------------------------|-------------------------------------------------------------------------|---------------------|---------------------------|--|--|
| Course                           | Abilities of understanding and using creatively the concepts and proofs | Written examination | 30%                       |  |  |
| Seminar                          | Abilities of solving problems and applying algorithms                   | Written examination | 70%                       |  |  |
| Laboratory                       |                                                                         |                     |                           |  |  |
| Project                          |                                                                         |                     |                           |  |  |
| Minimum standard of performance: |                                                                         |                     |                           |  |  |

Ability to present coherently a theoretical subject and to solve problems with practical content.

Course responsible Prof.dr. Mircea Ivan

<sup>\*</sup>Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

# 1. Data about the program of study

| 1.1 Institution                    | The Technical University of Cluj-Napoca     |
|------------------------------------|---------------------------------------------|
| 1.2 Faculty                        | Faculty of Automation and Computer Science  |
| 1.3 Department                     | Computer Science                            |
| 1.4 Field of study                 | Computer Science and Information Technology |
| 1.5 Cycle of study                 | Bachelor of Science                         |
| 1.6 Program of study/Qualification | Computer science/ Engineer                  |
| 1.7 Form of education              | Full time                                   |
| 1.8 Subject code                   | 2.                                          |

# 2. Data about the subject

| 2.1 Subject name                                                             |                                                  |                                                       | Linear                                              | Linear Algebra                                                             |  |   |
|------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|--|---|
| 2.2 Course responsible/lecturer                                              |                                                  | Prof. d                                               | Prof. dr. Ioan RASA <u>Ioan.Rasa@math.utcluj.ro</u> |                                                                            |  |   |
| 2.3 Teachers in charge of seminars/                                          |                                                  | Conf. dr. Daniela Inoan Daniela.Inoan@math.utcluj.ro, |                                                     |                                                                            |  |   |
| laboratory/ project                                                          | ratory/ project                                  |                                                       |                                                     |                                                                            |  |   |
| 2.4 Year of study                                                            | Ι                                                | 2.5 Sem                                               | ester                                               | ster 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification) |  | Е |
| DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară |                                                  |                                                       | DF                                                  |                                                                            |  |   |
| 2.7 Subject category                                                         | DI – Impusă, DOp – opțională, DFac – facultativă |                                                       |                                                     | DD                                                                         |  |   |

## 3. Estimated total time

| 3.1 Number of hours per week                                                         | 4        | of which:   | Course    | 2       | Seminars | 2  | Laboratory | Project |    |
|--------------------------------------------------------------------------------------|----------|-------------|-----------|---------|----------|----|------------|---------|----|
| 3.2 Number of hours per semester                                                     | 56       | of which:   | Course    | 28      | Seminars | 28 | Laboratory | Project |    |
| 3.3 Individual study:                                                                |          |             |           |         |          |    |            |         |    |
| (a) Manual, lecture material                                                         | and no   | tes, biblio | graphy    |         |          |    |            |         | 20 |
| (b) Supplementary study in t                                                         | he libra | ary, online | and in th | ne fiel | d        |    |            |         | 4  |
| (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays |          |             |           |         |          | 17 |            |         |    |
| (d) Tutoring                                                                         |          |             |           |         |          |    |            |         |    |
| (e) Exams and tests                                                                  |          |             |           |         |          | 3  |            |         |    |
| (f) Other activities:                                                                |          |             |           |         | 0        |    |            |         |    |
| 3.4 Total hours of individual study                                                  | (suma (  | (3.3(a)3.   | 3(f)))    |         | 44       |    |            |         |    |
| 3.5 Total hours per semester (3.2+3.4)                                               |          |             |           |         |          |    |            |         |    |

# 4. Pre-requisites (where appropriate)

3.6 Number of credit points

| 4.1 Curriculum | Basic knowledge of Linear Algebra and Analytic Geometry                   |
|----------------|---------------------------------------------------------------------------|
| 4.3 Competence | Competences in elementary Linear Algebra and Analytic Geometry: matrices, |
|                | determinants, linear systems, vectors and lines in plane                  |

## 5. Requirements (where appropriate)

| 5.1. For the course       | Blackboard, videoprojector |
|---------------------------|----------------------------|
| 5.2. For the applications | Blackboard, videoprojector |

| 6.1 Professional competences | C1 – Operating with basic Mathematical, Engineering and Computer Science          |
|------------------------------|-----------------------------------------------------------------------------------|
|                              | concepts                                                                          |
|                              | C1.1 - Recognizing and describing specific concepts to calculability, complexity, |
|                              | programming paradigms and modeling of computing and communication                 |
|                              | systems                                                                           |
|                              | C1.2 - Using specific theories and tools (algorithms, schemes, models, protocols, |
|                              | etc.) for explaining the structure and the functioning of hardware, software and  |
|                              | communication systems                                                             |

|                       | C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed systems |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.2 Cross competences | N/A                                                                                                                                                                                                                                                           |

| 7.1 General objective   | A presentation of the concepts, notions, methods and fundamental techniques used in linear algebra and analytic geometry.                                                                                                                                              |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.2 Specific objectives | Use of the matriceal calculus (in the general context of linear algebra) in order to solve problems in engineering.  Use of the vectorial calculus (in the general context of analytic geometry) in modelling and solving practical problems concerning spatial forms. |

### 8. Contents

| 8.1 Lectures                                                                                                     | Hours | Teaching methods       | Notes |
|------------------------------------------------------------------------------------------------------------------|-------|------------------------|-------|
| Linear spaces. Definition. Linear subspaces. Examples.                                                           | 2     |                        |       |
| Linear independence. Basis. Dimension. Change of basis.                                                          | 2     |                        |       |
| Inner - product spaces. Definition, properties, Schwarz' inequality.  Examples                                   | 2     |                        |       |
| Linear transformations. Definition, elementary properties, Kernel and Image.                                     | 2     |                        |       |
| The matrix associated to a linear transformation. The standard construction. Expresions in terms of coordinates. | 2     |                        |       |
| Eigenvalues and eigenvectors. Definitions, invariant subspaces, characteristic polynomials.                      | 2     | Explanation            |       |
| The diagonal form. Canonical forms, diagonalizability.                                                           | 2     | Demonstration          |       |
| The Jordan canonical form. Construction of a Jordan basis and a Jordan matrix.                                   | 2     | Collaboration          |       |
| Functions of a matrix. The n-th power of a matrix. Elementary functions of a matrix.                             | 2     | Interactive activities |       |
| The adjoint operator. Definition, properties, examples.                                                          | 2     |                        |       |
| Self-adjoint operators, unitary operators, properties of the eigenvalues and eigenvectors.                       | 2     |                        |       |
| Bilinear forms, quadratic forms. The associated matrix.                                                          | 2     |                        |       |
| The canonical form. Reduction to a canonical form. The method of eigenvalues and Jacobi's method.                | 2     |                        |       |
| Conics and quadrics. Reduction to a canonical form. Geometric properties.                                        | 2     |                        |       |

- 1. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analytic Geometry, Ed. Mediamira, 2012
- 2. V. Pop, I. Rasa, Linear Algebra with Applications to Markov Chains, Ed. Mediamira, 2005

| 8.2 Applications – Seminars/Laboratory/Project            | Hours | Teaching methods       | Notes |
|-----------------------------------------------------------|-------|------------------------|-------|
| Determinants, matrices, geometric vectors                 | 2     |                        |       |
| Linear spaces, bases, dimension                           | 2     |                        |       |
| Inner-product spaces                                      | 2     | ]                      |       |
| Linear transformations. Examples                          | 2     | Explanation            |       |
| Linear transformations characterized in terms of matrices | 2     | Danis and starting     |       |
| Invariant subspaces, eigenvalues, eigenvectors            | 2     | Demonstration          |       |
| Diagonalizable linear transformations                     | 2     | Collaboration          |       |
| Jordan bases, Jordan canonical forms                      | 2     | Collaboration          |       |
| Elementary functions of a matrix, examples                | 2     | Interactive activities |       |
| The adjoint operator                                      | 2     |                        |       |
| Special classes of operators                              | 2     |                        |       |
| Bilinear forms, quadratic forms                           | 2     |                        |       |

| Reduction to a canonical form                      | 2 |
|----------------------------------------------------|---|
| Conics and quadrics, reduction to a canonical form | 2 |

- 1. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analytic Geometry, Ed. Mediamira, 2012
- 2. V. Pop, I. Corovei, Algebra pentru ingineri. Culegere de probleme, Ed. Mediamira, 2003.

# 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

#### 10. Evaluation

| Activity type                     | Assessment criteria                                                     | Assessment methods  | Weight in the final grade |  |  |
|-----------------------------------|-------------------------------------------------------------------------|---------------------|---------------------------|--|--|
| Course                            | Abilities of understanding and using creatively the concepts and proofs | Written examination | 30%                       |  |  |
| Seminar                           | Abilities of solving problems and applying algorithms                   | Written examination | 70%                       |  |  |
| Laboratory                        |                                                                         |                     |                           |  |  |
| Project                           |                                                                         |                     |                           |  |  |
| Minimum atom doud of nonformances |                                                                         |                     |                           |  |  |

Minimum standard of performance:

Ability to present coherently a theoretical subject and to solve problems with practical content.

Course responsible Prof.dr. Ioan Rasa

<sup>\*</sup>Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

# 1. Data about the program of study

| 1.1 Institution                    | The Technical University of Cluj-Napoca     |
|------------------------------------|---------------------------------------------|
| 1.2 Faculty                        | Faculty of Automation and Computer Science  |
| 1.3 Department                     | Computer Science                            |
| 1.4 Field of study                 | Computer Science and Information Technology |
| 1.5 Cycle of study                 | Bachelor of Science                         |
| 1.6 Program of study/Qualification | Computer science/ Engineer                  |
| 1.7 Form of education              | Full time                                   |
| 1.8 Subject code                   | 3.                                          |

# 2. Data about the subject

| 2.1 Subject name            | Special Mathematics I |                                                                                    |                                   |                                                     |    |
|-----------------------------|-----------------------|------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|----|
| 2.2 Course responsible/led  | turer                 | urer Prof. dr. Daniela ROŞCA <u>Daniela.Rosca at math.utcluj.ro</u>                |                                   |                                                     | ,  |
| 2.3 Teachers in charge of s | emina                 | eminars/ Prof. dr. Daniela ROŞCA <u>Daniela.Rosca at math.utcluj.ro</u>            |                                   |                                                     | ,  |
| laboratory/ project         |                       |                                                                                    |                                   |                                                     |    |
| 2.4 Year of study           | Ι                     | 2.5 Semester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification) |                                   | Е                                                   |    |
| 2.7 Subject category        |                       | ntală, D                                                                           | D — î                             | n domeniu, DS – de specialitate, DC – complementară | DF |
|                             |                       | 00p – op                                                                           | p – opțională, DFac – facultativă |                                                     | DI |

## 3. Estimated total time

| 3.1 Number of hours per week                                                         | 4       | of which:   | Course    | 2       | Seminars | 2  | Laboratory | Project |    |
|--------------------------------------------------------------------------------------|---------|-------------|-----------|---------|----------|----|------------|---------|----|
| 3.2 Number of hours per semester                                                     | 56      | of which:   | Course    | 28      | Seminars | 28 | Laboratory | Project |    |
| 3.3 Individual study:                                                                |         |             |           |         |          |    |            |         |    |
| (a) Manual, lecture material                                                         | and no  | tes, biblio | graphy    |         |          |    |            |         | 12 |
| (b) Supplementary study in t                                                         | he libr | ary, online | and in th | ne fiel | d        |    |            |         | 28 |
| (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays |         |             |           |         |          | 14 |            |         |    |
| (d) Tutoring                                                                         |         |             |           |         |          | 11 |            |         |    |
| (e) Exams and tests                                                                  |         |             |           |         | 4        |    |            |         |    |
| (f) Other activities:                                                                |         |             |           |         | 0        |    |            |         |    |
| 3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 69                         |         |             |           |         |          |    |            |         |    |
| 3.5 Total hours per semester (3.2+3.4) 125                                           |         |             |           |         |          |    |            |         |    |
|                                                                                      |         |             |           |         |          |    |            |         |    |

## 4. Pre-requisites (where appropriate)

3.6 Number of credit points

| 4.1 Curriculum | Algebra, highschool level (real profile)                                    |
|----------------|-----------------------------------------------------------------------------|
| 4.4 Competence | Notions of combinatorial theory (arrangements, permutations, combinations); |
|                | sets and operations with sets; notions of mathematical logic; mathematical  |
|                | induction method, calculations with matrices                                |

## 5. Requirements (where appropriate)

| 5.1. For the course       | Blackboard, videoprojector, computer, graphic tablet |
|---------------------------|------------------------------------------------------|
| 5.2. For the applications | Blackboard, videoprojector, computer, graphic tablet |

| 6.1 Professional competences | C1 – Operating with basic Mathematical, Engineering and Computer Science                 |
|------------------------------|------------------------------------------------------------------------------------------|
|                              | concepts                                                                                 |
|                              | <b>C1.1</b> - Recognizing and describing specific concepts to calculability, complexity, |
|                              | programming paradigms and modeling of computing and communication                        |
|                              | systems                                                                                  |
|                              | C1.2 - Using specific theories and tools (algorithms, schemes, models, protocols,        |
|                              | etc.) for explaining the structure and the functioning of hardware, software and         |

|                       | communication systems                                                            |
|-----------------------|----------------------------------------------------------------------------------|
|                       | C1.3 - Building models for various components of computing systems               |
|                       | C1.4 - Formal evaluation of the functional and non-functional characteristics of |
|                       | computing systems                                                                |
|                       | C1.5 - Providing theoretical background for the characteristics of the designed  |
|                       | systems                                                                          |
| 6.2 Cross competences | N/A                                                                              |

| 7. Distipline objective (as results from the key competences games) |                                                                                                                   |  |  |  |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| 7.1 General objective                                               | A presentation of the concepts, notions and fundamental methods used in counting and discrete probability theory. |  |  |  |
|                                                                     | A presentation of basic concepts and properties in graph theory, basic algorithms                                 |  |  |  |
|                                                                     | and theorems based in graph theory, and their mathematical proof.                                                 |  |  |  |
| 7.2 Specific objectives                                             | Develop and apply strategies for solving combinatorial problems;                                                  |  |  |  |
|                                                                     | Identification of patterns in solving combinatorial counting problems;                                            |  |  |  |
|                                                                     | Modeling and formulation, in terms of probability theory and specific notations,                                  |  |  |  |
|                                                                     | of concrete problems coming from random experiments and random processes;                                         |  |  |  |
|                                                                     | Identify standard discrete distributions of probability for solving probabilistic                                 |  |  |  |
|                                                                     | problems; Interpretation of numerical results in the problems modeled using                                       |  |  |  |
|                                                                     | random variables; Modelling of concrete problems using graph theory notions                                       |  |  |  |
|                                                                     | and concepts; Application of specific algorithms to problems modeled by classical                                 |  |  |  |
|                                                                     | graph theory (trees, minimum spanning trees, coding and decoding trees,                                           |  |  |  |
|                                                                     | construction Eulerian trails and Hamiltonian paths, the Chinese postman                                           |  |  |  |
|                                                                     | problem, flow problems, etc).                                                                                     |  |  |  |

### 8. Contents

| 8.1 Lectures                                                                                                                                                                                            | Hours | Teaching methods                                          | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------|-------|
| Principles of counting and counting methods.                                                                                                                                                            | 2     |                                                           |       |
| Recursions and generating functions.                                                                                                                                                                    | 2     |                                                           |       |
| Introduction to graphs. Definitions, notations, general properties.                                                                                                                                     | 2     |                                                           |       |
| Connectivity. Graphs and digraphs representation.                                                                                                                                                       | 2     |                                                           |       |
| Trees, sorting and searching: roted trees, decision trees, sorting trees.                                                                                                                               | 2     |                                                           |       |
| Binary trees and binary codes. Huffman codes.                                                                                                                                                           | 2     |                                                           |       |
| Spanning trees. Depth-first search, breadth-first search. Minimum spanning tree in weighted graphs - Prim's and Kruskal's algorithm.                                                                    | 2     | Windows Journal                                           |       |
| Minimum spanning trees in directed graphs - Chu-Liu-Edmonds algorithm. Shortest path - Dijkstra's algorithm. Greedy algorithms. General properties and greedy algorithm for the maximum weight problem. | 2     | software for graphic tablet , videoprojection Explanation |       |
| Bipartite graphs. Matchings. Matchings in bipartite graphs. Maximum matchings.                                                                                                                          | 2     | Demonstration                                             |       |
| Eulerian graphs and Hamiltonian graphs. The postman's problem.                                                                                                                                          | 2     |                                                           |       |
| Networks, flows and cuts. Max flow min cut theorem.                                                                                                                                                     | 2     | Collaboration                                             |       |
| Introduction to discrete probabilities: the axioms of probabilities, conditional probabilities, total probability and Bayes' formula.                                                                   | 2     |                                                           |       |
| Probabilistic schemes: binomial, multinomial, Poisson, geometric, negative binomial, Poisson's urns.                                                                                                    | 2     |                                                           |       |
| Random variables, examples of discrete random variables, operations with random variables.                                                                                                              | 2     |                                                           |       |
| Expected value and variance. Covariance. Chebyshev's theorem and weak law of large numbers.                                                                                                             | 2     |                                                           |       |

- 1. T. Toadere, Grafe, Teorie, algoritmi, aplicatii, Ed. Microinformatica, Cluj, 2002.
- 2. N. Vornicescu, Grafe. Teorie si algoritmi, Ed. Mediamira, 2005.
- 3. D. Rosca, Discrete Mathematics, Ed. Mediamira, 2007.
- 4. A. Mitrea, Fundamente de teoria probabilitatilor, Ed. UTPress, 2003.

- 5. K. Bogart, S. Drysdale, C. Stein, Discrete Math for Computer Science Students, available online at <a href="http://www.cs.dartmouth.edu/~ac/Teach/cs21-Winter04/">http://www.cs.dartmouth.edu/~ac/Teach/cs21-Winter04/</a>
- 6. N. L. Biggs, Discrete Mathematics, Oxford University Press, 2005.
- 7. R. Durret, The Essentials of Probability, Duxbury Press, 1994.

| 8.2 Applications – Seminars/Laboratory/Project                                                                       | Hours | Teaching methods         | Notes |
|----------------------------------------------------------------------------------------------------------------------|-------|--------------------------|-------|
| Counting. The pigeonhole principle, counting set of pairs. Functions, words. Selections with and without repetition. | 2     |                          |       |
| Partitions, classifications, distributions.                                                                          | 2     |                          |       |
| Walks, trails, cycles in graphs. Graphs and digraphs representations.                                                | 2     |                          |       |
| Problems related to graphs.                                                                                          | 2     |                          |       |
| Properties and applications of incidence matrices and adjacency matrices.                                            | 2     | Windows Journal          |       |
| Applications of trees: decision problems, sorting algorithms.                                                        | 2     | software for graphic     |       |
| Spanning trees: depth-first search, breadth-first search trees,                                                      | 2     | tablet , videoprojection |       |
| properties. Algorithms for minimum spanning trees.                                                                   |       |                          |       |
| Algorithms for shortest path. Greedy algorithms for vertex coloring.                                                 | 2     | Explanation              |       |
| General notions about planar graphs.                                                                                 |       |                          |       |
| Bipartite graphs and matchings. Construction of alternating paths.                                                   | 2     | Demonstration            |       |
| Eulerian and Hamiltonian graphs. Algorithms for Eulerian and                                                         | 2     |                          |       |
| Hamiltonian tours.                                                                                                   | 2     | Collaboration            |       |
| Calculation of probabilities.                                                                                        | 2     |                          |       |
| The theorem on total probability and Bayes' formula with                                                             | 2     |                          |       |
| applications.                                                                                                        |       |                          |       |
| Construction of random variables and calculation expected value and                                                  | 2     |                          |       |
| variance.                                                                                                            |       |                          |       |
| Applications of the weak law for large numbers.                                                                      | 2     |                          |       |

- 1. J. A. Bondy, U.S.R. Murty, Graph theory with applications, available online at <a href="http://www.ecp6.jussieu.fr/pageperso/bondy/books/gtwa/gtwa.htm">http://www.ecp6.jussieu.fr/pageperso/bondy/books/gtwa/gtwa.htm</a>
- 2. J. Gross, J. Yellen, Graph Theory and its Applications, CRC Press, 1999
- 3. Hannelore Lisei, Sanda Micula, Anna Soos, *Probability Theory through Problems and applications*, Cluj University Press, 2006.
- 4. Arthur Enghel Probleme de matematică: strategii de rezolvare, Ed. Gil, 2006.

# 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

### 10. Evaluation

| Activity type                         | Assessment criteria                                                | Assessment methods  | Weight in the final grade |  |
|---------------------------------------|--------------------------------------------------------------------|---------------------|---------------------------|--|
| Course                                | Abilities of understanding and reproducing the concepts and proofs | Written examination | 30.00%                    |  |
| Seminar                               | Abilities of solving problems and applying algorithms              | Written examination | 70.00%                    |  |
| Laboratory                            |                                                                    |                     |                           |  |
| Project                               |                                                                    |                     |                           |  |
| NAtabas and standard of a sufface and |                                                                    |                     |                           |  |

Minimum standard of performance:

Ability to present coherently a theoretical subject and to solve problems with practical content.

Course responsible Prof.dr. Daniela Rosca

<sup>\*</sup>Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

# 1. Data about the program of study

| 1.1 Institution                    | The Technical University of Cluj-Napoca     |
|------------------------------------|---------------------------------------------|
| 1.2 Faculty                        | Faculty of Automation and Computer Science  |
| 1.3 Department                     | Computer Science                            |
| 1.4 Field of study                 | Computer Science and Information Technology |
| 1.5 Cycle of study                 | Bachelor of Science                         |
| 1.6 Program of study/Qualification | Computer science/ Engineer                  |
| 1.7 Form of education              | Full time                                   |
| 1.8 Subject code                   | 4.                                          |

## 2. Data about the subject

| 2.1 Subject name                    |   |                                                                                    | Logic E                                                          | Logic Design                                              |    |  |  |  |
|-------------------------------------|---|------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|----|--|--|--|
| 2.2 Course responsible/lecturer     |   |                                                                                    | Prof. d                                                          | Prof. dr. eng. Octavian Creţ – Octavian.Cret@cs.utcluj.ro |    |  |  |  |
| 2.3 Teachers in charge of seminars/ |   |                                                                                    | As.Drd.Ing. Diana Irena Pop – <u>Diana.Pop@cs.utcluj.ro</u>      |                                                           |    |  |  |  |
| laboratory/ project                 |   |                                                                                    |                                                                  |                                                           |    |  |  |  |
| 2.4 Year of study                   | I | 2.5 Semester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification) |                                                                  | Е                                                         |    |  |  |  |
| 2.7 Subject category                |   | ntală, D                                                                           | ntală, DD – în domeniu, DS – de specialitate, DC – complementară |                                                           |    |  |  |  |
|                                     |   | 00р – ор                                                                           | oțion                                                            | ală, DFac – facultativă                                   | DI |  |  |  |

## 3. Estimated total time

| 3.1 Number of hours per week                                                         | 4      | of which:   | Course | 2  | Seminars | Laboratory | 2  | Project |    |
|--------------------------------------------------------------------------------------|--------|-------------|--------|----|----------|------------|----|---------|----|
| 3.2 Number of hours per semester                                                     | 56     | of which:   | Course | 28 | Seminars | Laboratory | 28 | Project |    |
| 3.3 Individual study:                                                                |        |             |        |    |          |            |    |         |    |
| (a) Manual, lecture material                                                         | and no | tes, biblio | graphy |    |          |            |    |         | 25 |
| (b) Supplementary study in the library, online and in the field                      |        |             |        |    |          | 17         |    |         |    |
| (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays |        |             |        |    | 17       |            |    |         |    |
| (d) Tutoring                                                                         |        |             |        |    | 6        |            |    |         |    |
| (e) Exams and tests                                                                  |        |             |        |    | 9        |            |    |         |    |
| (f) Other activities:                                                                |        |             |        |    | 0        |            |    |         |    |
| 3.4 Total hours of individual study                                                  | (suma  | (3.3(a)3.   | 3(f))) |    | 69       |            |    |         |    |
| 3.5 Total hours per semester (3.2+3                                                  | 3.4)   |             |        |    | 125      |            |    |         |    |

## 4. Pre-requisites (where appropriate)

3.6 Number of credit points

| 4.1 Curriculum | • N/A                                        |
|----------------|----------------------------------------------|
| 4.5 Competence | Mathematics (Algebra), Physics (electricity) |

## 5. Requirements (where appropriate)

| 5.1. For the course       | A minimum of 75% course attendance rate is mandatory for being admitted to the             |
|---------------------------|--------------------------------------------------------------------------------------------|
|                           | final exam.                                                                                |
| 5.2. For the applications | Preliminary preparation of summaries from the indicated bibliography (laboratory textbook) |
|                           | textbooky                                                                                  |

| 6.1 Professional competences | C1 – Operating with basic Mathematical, Engineering and Computer Science concepts                      |
|------------------------------|--------------------------------------------------------------------------------------------------------|
|                              | C1.1 – Recognizing and describing concepts that are specific to the fields of                          |
|                              | calculability, complexity, programming paradigms, and modeling computational and communication systems |
|                              | <b>C1.2</b> – Using specific theories and tools (algorithms, schemes, models, protocols,               |
|                              | etc.) for explaining the structure and the functioning of hardware, software and                       |

|                       | communication systems  C1.3 – Building models for various components of computing systems  C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems  C1.5 – Providing a theoretical background for the characteristics of the designed systems |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.2 Cross competences | N/A                                                                                                                                                                                                                                                                                      |

| 7.1 General objective   | The main objective of this discipline is to give to the students the bases of Logic Design, in order to make them able to analyze, design and implement any digital system.                                                                                                                                                                                                                                                                                                                |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.2 Specific objectives | <ul> <li>To reach this goal, students will learn to:</li> <li>Analyze and synthesize combinational logic systems;</li> <li>Analyze and synthesize synchronous and asynchronous sequential machines;</li> <li>Apply digital system design principles and descriptive techniques;</li> <li>Utilize programmable devices such as FPGAs and PLDs to implement digital systems;</li> <li>Understand timing issues in digital systems and study these via digital circuit simulation.</li> </ul> |

### 8. Contents

| 8.1 Lectures                                                                                      | Hours | Teaching methods | Notes |
|---------------------------------------------------------------------------------------------------|-------|------------------|-------|
| Introduction. Number systems and codes, errors                                                    | 2     |                  |       |
| Number representation systems. Binary arithmetic                                                  | 2     | 1                |       |
| Boolean Algebra. Boolean functions. Logic gates. Digital systems and functions representation     | 2     |                  |       |
| Methods for minimizing Boolean functions and systems of functions                                 | 2     |                  |       |
| Combinational logic circuits (CLCs) analysis and design (synthesis). SSI and MSI CLCs.            | 2     |                  |       |
| Methods for designing digital systems with SSI, MSI, LSI and VLSI circuits. Combinational Hazard. | 2     | Blackboard       |       |
| Sequential logic circuits. Latches and Flip-Flops.                                                | 2     | presentation     |       |
| Flip-Flops applications: frequency dividers, counters                                             | 2     | discussions      |       |
| Flip-Flops applications: data registers, converters, memories                                     | 2     |                  |       |
| Methods for designing digital systems using Flip-Flops                                            | 2     |                  |       |
| Methods for designing digital systems using memories, multiplexers, decoders, counters            | 2     |                  |       |
| Methods for designing sequential synchronous systems                                              | 2     |                  |       |
| Methods for designing digital systems using programmable devices (I)                              | 2     |                  |       |
| Methods for designing digital systems using programmable devices (II)                             | 2     |                  |       |

- 1. Contemporary Logic Design, Randy H. Katz, Benjamin Cunnings / Addison Wesley Publishing Co., 1993.
- 2. Digital Design Principles and Practices, John F. Wakerly, Prentice-Hall, 2000.
- 3. FPGA-based System Design, Wayne Wolf, PRENTICE HALL Professional Technical Reference Upper Saddle River, NJ 07458 www.phptr.com ISBN: 0-13-142461-0.

| 8.2 Applications – Seminars/Laboratory/Project                             | Hours | Teaching methods            | Notes |
|----------------------------------------------------------------------------|-------|-----------------------------|-------|
| Basic Logic Circuits                                                       | 2     |                             |       |
| ActiveHDL Schematic Editor and Simulator (I)                               | 2     |                             |       |
| ActiveHDL Schematic Editor and Simulator (II)                              | 2     | Practical work on test      |       |
| Combinational Logic Circuits (I)                                           | 2     | boards, FPGA boards,        |       |
| Combinational Logic Circuits (II) – MSI circuits                           | 2     | specialized software,       |       |
| Combinational Logic Circuits (III) – Complex circuits                      | 2     | blackboard                  |       |
| Synthesis of Combinatorial Logic Circuits using Programmable Logic Devices | 2     | presentations, supplemental |       |

| Flip-flops                                                | 2 | explanations and |  |
|-----------------------------------------------------------|---|------------------|--|
| Counters (I)                                              | 2 | discussions      |  |
| Counters (II)                                             | 2 |                  |  |
| Registers and Shift Registers                             | 2 |                  |  |
| The XILINX FPGA Family                                    | 2 |                  |  |
| Synthesis of Sequential Logic Circuits using FPGA Devices | 2 |                  |  |
| Laboratory test                                           | 2 |                  |  |

1. Analiza şi sinteza dispozitivelor numerice, Îndrumător de laborator, Ediţia a-3-a, L. Văcariu, O. Creţ, A. Neţin, Ed. U.T. Press, Cluj-Napoca, 2009.

# 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

• Since this discipline is a basic one in Computer Science, its content is "classic" but also modern because it familiarizes students with the modern principles of Logic Design (utilization of modern simulation and synthesis tools, FPGA and CPLD-based design etc.). Its contents have been discussed with major academia and industry actors from Romania, Europe and U.S.A. and it has been evaluated several times by Romanian Governmental Agencies like CNEAA and ARACIS.

#### 10. Evaluation

| Activity type | Assessment criteria                                  | Assessment methods | Weight in the final grade |
|---------------|------------------------------------------------------|--------------------|---------------------------|
| Course        | Problems solving abilities Presence, (Inter)activity | Written Exam       | 70%                       |
| Seminar       |                                                      |                    |                           |
| Laboratory    | Problems solving abilities Presence, (Inter)activity | Written Exam       | 30%                       |
| Project       |                                                      |                    |                           |

Minimum standard of performance:

Modeling and solving typical Logic Design problems using the domain-specific formal apparatus.

Grade calculus: 30% lab + 70% final exam

Conditions for participating in the final exam: Lab ≥ 5

Conditions for promotion: final exam  $\geq 5$ 

For participating in the final written exam minimum of 80% course attendance rate is necessary.

Course responsible Prof.dr. Octavian Cret

<sup>.</sup> Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

## 1. Data about the program of study

| 1.1 Institution                    | The Technical University of Cluj-Napoca     |
|------------------------------------|---------------------------------------------|
| 1.2 Faculty                        | Faculty of Automation and Computer Science  |
| 1.3 Department                     | Computer Science                            |
| 1.4 Field of study                 | Computer Science and Information Technology |
| 1.5 Cycle of study                 | Bachelor of Science                         |
| 1.6 Program of study/Qualification | Computer science/ Engineer                  |
| 1.7 Form of education              | Full time                                   |
| 1.8 Subject code                   | 5.                                          |

## 2. Data about the subject

| 2.1 Subject name                    |                |                                                                              | Compu                                                            | Computer Programming                                                |    |    |  |
|-------------------------------------|----------------|------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|----|----|--|
| 2.2 Course responsible/lecturer     |                |                                                                              | Lect. d                                                          | Lect. dr. eng. Marius Joldoş – <u>Marius.Joldos@cs.utcluj.ro</u>    |    |    |  |
| 2.3 Teachers in charge of seminars/ |                |                                                                              | Asist. dr. eng.Ciprian Pocol – <u>Ciprian.Pocol@cs.utcluj.ro</u> |                                                                     |    |    |  |
| laboratory/ project                 |                |                                                                              |                                                                  |                                                                     |    |    |  |
| 2.4 Year of study                   | I 2.5 Semester |                                                                              |                                                                  | 2.6 Type of assessment (E - exam, C - colloquium, V - verification) | E  |    |  |
| 2.7 Subject category                |                | DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară |                                                                  |                                                                     |    | DF |  |
|                                     |                | 00p – op                                                                     | oțion                                                            | ală, DFac – facultativă                                             | DI |    |  |

## 3. Estimated total time

| 3.1 Number of hours per week                                                         | 5      | of which:   | Course | 2  | Seminars | 1  | Laboratory | 2  | Project |    |
|--------------------------------------------------------------------------------------|--------|-------------|--------|----|----------|----|------------|----|---------|----|
| 3.2 Number of hours per semester                                                     | 70     | of which:   | Course | 28 | Seminars | 14 | Laboratory | 28 | Project |    |
| 3.3 Individual study:                                                                |        |             |        |    |          |    | •          |    |         |    |
| (a) Manual, lecture material                                                         | and no | tes, biblio | graphy |    |          |    |            |    |         | 30 |
| (b) Supplementary study in the library, online and in the field                      |        |             |        |    | 25       |    |            |    |         |    |
| (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays |        |             |        |    |          | 13 |            |    |         |    |
| (d) Tutoring                                                                         |        |             |        |    |          | 7  |            |    |         |    |
| (e) Exams and tests                                                                  |        |             |        |    |          | 5  |            |    |         |    |
| (f) Other activities:                                                                |        |             |        |    | 0        |    |            |    |         |    |
| 3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 80                         |        |             |        |    |          |    |            |    |         |    |
| 3.5 Total hours per semester (3.2+3.4) 150                                           |        |             |        |    |          |    |            |    |         |    |

### 4. Pre-requisites (where appropriate)

3.6 Number of credit points

| is requisited (inner appropriate) |     |  |  |  |
|-----------------------------------|-----|--|--|--|
| 4.1 Curriculum                    | N/A |  |  |  |
| 4.6 Competence                    | N/A |  |  |  |

## 5. Requirements (where appropriate)

| 5.1. For the course       | N/A |
|---------------------------|-----|
| 5.2. For the applications | N/A |

| 6.1 Professional competences | C1 – Operating with basic Mathematical, Engineering and Computer Science                 |
|------------------------------|------------------------------------------------------------------------------------------|
|                              | concepts                                                                                 |
|                              | <b>C1.1</b> - Recognizing and describing specific concepts to calculability, complexity, |
|                              | programming paradigms and modeling of computing and communication                        |
|                              | systems                                                                                  |
|                              | C1.2 - Using specific theories and tools (algorithms, schemes, models, protocols,        |
|                              | etc.) for explaining the structure and the functioning of hardware, software and         |
|                              | communication systems                                                                    |
|                              | C1.3 - Building models for various components of computing systems                       |

|                       | C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed systems |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.2 Cross competences | N/A                                                                                                                                                                                        |

| 7.1 General objective   | To learn how to use a general purpose high level programming language for writing programs                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.2 Specific objectives | <ul> <li>To understand a small-sized problem stated in a natural language, and develop a solution as a computer program.</li> <li>To understand code written by other programmers and reason critically about them.</li> <li>To design and implement computer programs in C using the structured/modular approach.</li> <li>To learn a good programming style.</li> <li>To determine the causes of programming errors and correct them</li> </ul> |

### 8. Contents

|                                                                                                                                                 |       | •                   |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------|---------------|
| 8.1 Lectures                                                                                                                                    | Hours | Teaching methods    | Notes         |
| Programming Languages. Stages of Problem solving Using Computers. Algorithm – Definition, Properties. C features. Simple Data Types. Simple I/O | 2     |                     |               |
| Programming Style. Digital Representations. Variables and Expressions                                                                           | 2     |                     |               |
| C Statements. C Preprocessing                                                                                                                   | 2     |                     |               |
| Functions (Structure, Invocation, Parameter passing, Functions as parameters, Variable scope). Functions for character processing               | 2     |                     |               |
| Modular Programming. Debugging                                                                                                                  | 2     |                     |               |
| Pointers. Memory Management.                                                                                                                    | 2     | Lectures, demos and | Uses a video- |
| Pointers and Arrays. Function Pointers                                                                                                          | 2     | discussions         | projector     |
| C Character Strings. C library                                                                                                                  | 2     |                     |               |
| Structures, unions, enumerations. User-defined Types                                                                                            | 2     |                     |               |
| File Handling. High Level I/O.                                                                                                                  | 2     |                     |               |
| Recursion. Mechanism and Examples                                                                                                               | 2     |                     |               |
| Working with time. I/O redirection. Variable length argument lists. Command line arguments. Self referential structures                         | 2     |                     |               |
| Sample Programs Explained. (Combinatorial generation. Simple Sorting Algorithms)                                                                | 2     |                     |               |
| Review                                                                                                                                          | 2     |                     |               |
|                                                                                                                                                 |       |                     |               |

- 1. Paul and Harvey Deitel, C: How to program, Pearson Education, 6ed, 2010
- 2. K.N. King, C Programming: A modern Approach, W.W. Norton, 2008
- 3. Stephen Prata, C Primer Plus, Sams, 5ed, 2004
- 4. Brain W. Kernighan, Dennis M. Ritchie The C Programming Language, Prentice Hall, Inc., 1988.
- 5. William H. Press Numerical Recipes in C The Art of Scientific Computing freely available on the Web (same address)

| 8.2 Applications – Seminars/Laboratory/Project         | Hours | Teaching methods       | Notes |
|--------------------------------------------------------|-------|------------------------|-------|
| S1. Algorithm Representations (Flowcharts, Pseudocode) | 1     |                        |       |
| S2. Operators, Expressions, Functions                  | 1     |                        |       |
| S3. Functions and Modular Programming                  | 1     | Tutoring, discussions, |       |
| S4. Pointers and Memory Management                     | 1     | and in class problem   |       |
| S5. String Manipulation. Command Line Arguments        | 1     | solving                |       |
| S6. Structures, Unions, Enumerations                   | 1     |                        |       |
| S7. Recursion. Working with Files                      | 1     |                        |       |

| L1.Pseudo code. Interactive Development Environments for C. Setting up and Using Codeblocks IDE | 2 |                        |                           |
|-------------------------------------------------------------------------------------------------|---|------------------------|---------------------------|
| L2. Simple IO in C                                                                              | 2 |                        |                           |
| L3. Expressions in C                                                                            | 2 |                        |                           |
| L4. Statements in C                                                                             | 2 |                        |                           |
| L5. Functions. Debugging C programs                                                             | 2 |                        |                           |
| L6. Modular Programming                                                                         | 2 | Tutoring, discussions, | PCs equipped              |
| L7. Pointers. Pointers and Arrays                                                               | 2 | and assisted program   | with MinGW<br>C and Code- |
| L8. Memory allocation. Pointers to functions                                                    | 2 | development            | blocks IDE                |
| L9. String manipulation                                                                         | 2 |                        | DIOCKS IDE                |
| L10. Structures, Unions, Enumerations                                                           | 2 |                        |                           |
| L11. High level I/O in C.                                                                       | 2 |                        |                           |
| L12. Recursion                                                                                  | 2 |                        |                           |
| L13. Review                                                                                     | 2 |                        |                           |
| L14. Laboratory test                                                                            | 2 |                        |                           |
| Bibliography                                                                                    |   |                        |                           |

# 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The contents of the course is in accordance with the ACM Computer Science Curricula recommendations.

#### 10. Evaluation

| Activity type | Assessment criteria                | Assessment methods                                                | Weight in the final grade |
|---------------|------------------------------------|-------------------------------------------------------------------|---------------------------|
| Course        | Written exam                       | Written exams:<br>In-class tests<br>Final                         | 10%<br>60%                |
| Seminar       | Seminar activity may bring bonuses |                                                                   |                           |
| Laboratory    | Laboratory test                    | Evaluation of program implementation In class activity evaluation | 30%                       |
| Project       |                                    |                                                                   |                           |

Minimum standard of performance:

Grade calculus: 10% midterm + 30% laboratory + 60% final exam Conditions for participating in the final exam: Laboratory ≥ 5

Conditions for promotion: grade  $\geq 5$ 

Course responsible S.I.dr. Marius Joldos

<sup>1.</sup> Moodle site for course available at: <a href="https://labacal.utcluj.ro">https://labacal.utcluj.ro</a> (laboratory session description are available on the site)

<sup>\*</sup>Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

## 1. Data about the program of study

| 1.1 Institution                    | The Technical University of Cluj-Napoca     |
|------------------------------------|---------------------------------------------|
| 1.2 Faculty                        | Faculty of Automation and Computer Science  |
| 1.3 Department                     | Computer Science                            |
| 1.4 Field of study                 | Computer Science and Information Technology |
| 1.5 Cycle of study                 | Bachelor of Science                         |
| 1.6 Program of study/Qualification | Computer science/ Engineer                  |
| 1.7 Form of education              | Full time                                   |
| 1.8 Subject code                   | 6.                                          |

## 2. Data about the subject

| 2.1 Subject name                    |                |          | Physics                                                          |                                                                     |                         |    |  |
|-------------------------------------|----------------|----------|------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------|----|--|
| 2.2 Course responsible/lecturer     |                | Prof.dr  | Prof.dr.fiz. Radu Fechete                                        |                                                                     |                         |    |  |
| 2.3 Teachers in charge of seminars/ |                |          | Lect. D                                                          | Lect. Dr. Codruta Badea; Assist. Dr. Dumitrita Corpodean            |                         |    |  |
| laboratory/ project                 |                |          |                                                                  |                                                                     |                         |    |  |
| 2.4 Year of study                   | I 2.5 Semester |          |                                                                  | 2.6 Type of assessment (E - exam, C - colloquium, V - verification) | С                       |    |  |
| DF – fundam                         |                | fundame  | ntală, DD – în domeniu, DS – de specialitate, DC – complementară |                                                                     |                         | DF |  |
| 2.7 Subject category                | DI – I         | mpusă, [ | 00p – op                                                         | oțion                                                               | ală, DFac – facultativă | DI |  |

## 3. Estimated total time

| _                                                                                    |        |             |        |    |          |    |            |    |         |    |
|--------------------------------------------------------------------------------------|--------|-------------|--------|----|----------|----|------------|----|---------|----|
| 3.1 Number of hours per week                                                         | 3      | of which:   | Course | 2  | Seminars |    | Laboratory | 1  | Project |    |
| 3.2 Number of hours per semester                                                     | 42     | of which:   | Course | 28 | Seminars |    | Laboratory | 14 | Project |    |
| 3.3 Individual study:                                                                |        |             |        |    |          |    |            |    |         |    |
| (a) Manual, lecture material                                                         | and no | tes, biblio | graphy |    |          |    |            |    |         | 16 |
| (b) Supplementary study in the library, online and in the field                      |        |             |        |    |          | 10 |            |    |         |    |
| (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays |        |             |        |    |          | 14 |            |    |         |    |
| (d) Tutoring                                                                         |        |             |        |    |          |    | 10         |    |         |    |
| (e) Exams and tests                                                                  |        |             |        |    |          | 3  |            |    |         |    |
| (f) Other activities:                                                                |        |             |        |    | 5        |    |            |    |         |    |
| 3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 58                         |        |             |        |    |          |    |            |    |         |    |
| 3.5 Total hours per semester (3.2+3.4)                                               |        |             |        |    |          |    |            |    |         |    |

## 4. Pre-requisites (where appropriate)

3.6 Number of credit points

| 4.1 Curriculum | Good knowledge in high school physics                                  |
|----------------|------------------------------------------------------------------------|
|                | Good knowledge in high school mathematics                              |
| 4.7 Competence | Some knowledge in operating computers (Word, Power Point, Excel, www). |

## 5. Requirements (where appropriate)

| 5.1. For the course       | N/A |
|---------------------------|-----|
| 5.2. For the applications | N/A |

| 6.1 Professional competences | C1 – Operating with basic Mathematical, Engineering and Computer Science          |
|------------------------------|-----------------------------------------------------------------------------------|
|                              | concepts                                                                          |
|                              | C1.1 - Recognizing and describing specific concepts to calculability, complexity, |
|                              | programming paradigms and modeling of computing and communication                 |
|                              | systems                                                                           |
|                              | C1.2 - Using specific theories and tools (algorithms, schemes, models, protocols, |
|                              | etc.) for explaining the structure and the functioning of hardware, software and  |
|                              | communication systems                                                             |

|                       | C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed systems |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.2 Cross competences | N/A                                                                                                                                                                                                                                                           |

|                         | the key competences gamea)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.1 General objective   | <ul> <li>Introduction of the most important physical quantities that are encountered in automation engineering.</li> <li>Introduction of the main laws of physics that play a central role in automation engineering applications.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.2 Specific objectives | <ul> <li>Understanding of the most important laws of classical mechanics</li> <li>Knowledge of the oscillatory and wave phenomena</li> <li>Knowledge of the sound characteristics and transfer phenomena</li> <li>Knowledge of the electrical, magnetically and electromagnetic phenomena.</li> <li>Knowledge of the quantum mechanical phenomena.</li> <li>The ability to document alone in a given scientific problem using the books library and the Internet.</li> <li>The ability to elaborate and to present a report on a given scientific problem</li> <li>The ability to represent graphically the physical quantities.</li> <li>The ability to use commercial computer programs for interpretation of the experimental data.</li> <li>The ability to solve a given physical problem and to express it in a mathematical form.</li> <li>The ability to work in a team for solving real physical problems</li> </ul> |

### 8. Contents

| 8. Contents                                                                                                                                                                                                                                                                                                |       |                                                                                                                           |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------|-------|
| 8.1 Lectures                                                                                                                                                                                                                                                                                               | Hours | Teaching methods                                                                                                          | Notes |
| Introductions. Physical quantities (fundamental physical quantities, derivate physical quantities). Space – time motion. Elements of motion.                                                                                                                                                               | 2     |                                                                                                                           |       |
| Basics of kinematics: velocity, acceleration, linear motions, curvilinear motions, circular motion.                                                                                                                                                                                                        | 2     | Didactic discourse,                                                                                                       |       |
| Dynamics: Principle of dynamics. Specific physical quantities (mass, force, linear momentum, mechanic work, energy, power.)                                                                                                                                                                                | 2     | exposure and explanation of curricular subjects, narrative-                                                               |       |
| Conservations laws of dynamics: linear momentum, kinetically momentum, energy, orbital momentum.                                                                                                                                                                                                           | 2     | story related to the physics history and association with                                                                 |       |
| Oscillatory motion: linearly harmonically oscillator, dumped oscillations, forced oscillations, resonance, Superposition of parallel and perpendicular oscillations.                                                                                                                                       | 2     | real life facts. Didactic<br>conversation<br>(heuristics and catechetic) in                                               |       |
| Waves. Wave function. Differential equation, Characteristic phenomena: reflection, refraction, interference, diffraction, dispersion, absorption.                                                                                                                                                          | 2     | which the students are involved.  Demonstration of physical                                                               |       |
| Elastic mechanic waves. Longitudinal waves in solids, liquids and gases. Wave intensity.                                                                                                                                                                                                                   | 2     | laws in mathematical form and using objects to                                                                            |       |
| Acoustics: sounds quality (sources, properties, parameters), closed chambers acoustics, sound reverberation, Doppler effect, ultrasounds.                                                                                                                                                                  | 2     | represents the physical phenomena                                                                                         |       |
| Electromagnetic waves: velocity, transversally, intensity, and range. Photometrical quantities. Polarization.                                                                                                                                                                                              | 2     | at reduced scale.  Demonstration with actions                                                                             |       |
| Quantum Mechanics: thermal radiation (specific physical quantities; spectral density of energy function and Rayleigh-Jeans, Wien, Planck's laws, Stefan-Boltzmann law, Wien's displacement law), photoelectric effect, Compton effect, Generation of pairs (particle antiparticle), de Broglie hypothesis. | 2     | performed by students which<br>are asked to: extract from<br>problem the<br>significant data, to<br>observe, identify and |       |
| Waves attached to particles. Davisson-Germer experiment. Wave group. Schrödinger equation. Wave function properties. Potential gap. Potential barrier.                                                                                                                                                     | 2     | classifyphysical laws and types of motions.                                                                               |       |

| lydrogen atom. Quantum numbers. Spin quantic number (magnetic pop, magnetic moment, orbital magnetic moment). Experimental roves of energy quantifications. Quantum transitions theory. Laser. Holography.                   | 2 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Electrons in solid body. Energy bands. Metals. Electrically conductibility. Hall effect. Contact potential difference. Thermoelectrically effect. Peltier effect.                                                            | 2 |
| Intrinsic semiconductors. Extrinsic semiconductors. p-n Junction. Transistor. Magnetic properties of solid body: magnetic moment, orbital magnetic moment, diamagnetism, paramagnetism, ferromagnetism. Superconductibility. | 2 |

### In UTC-N library

- 1. R. Fechete, Fundamental physics for engineers, course notes.
- 2. E. Culea, S. Nicoara, Fundamentals of Physics, RISOPRINT, Cluj-Napoca 2004
- 3. R. Fechete, Elemente de Fizica pentru Ingineri, Ed. UTPress, 2008.
- 4. I.Ardelean, Fizica pentru ingineri, Ed. UTPres, 2005.
- 5. I. Coroiu, E. Culea, Fizica I, Ed. UT. Press, 1999.
- 6. Microsoft Encarta Encyclopedia.
- 7. Encyclopedia Britannica.
- 8. www.wikipedia.org
- 9. http://users.pandora.be/educypedia/education/physicsbytopic.htm

|                                                          |       |                                                                                             | i e   |
|----------------------------------------------------------|-------|---------------------------------------------------------------------------------------------|-------|
| 8.2 Applications – Seminars/Laboratory/Project           | Hours | Teaching methods                                                                            | Notes |
| Work Protection. The study of thermoelectrically effect. | 1     | Heuristic discovery                                                                         |       |
| Longitudinal and transverse standing waves.              | 1     | In laboratory of some physical                                                              |       |
| Polarizations of light.                                  | 1     | phenomena.                                                                                  |       |
| Optical spectroscopy.                                    | 1     | Problematization                                                                            |       |
| The study of photoelectric effect.                       | 1     | (problematize)                                                                              |       |
| The determination of the energy gap of a semiconductor.  | 1     | presentations of laws and                                                                   |       |
| The study of Hall Effect.                                | 1     | principles of general physics<br>with situations from real<br>life, and situations from the |       |
|                                                          |       | future work of students.                                                                    |       |

### **Bibliography**

- 1. R. Fechete, R. Chelcea, D. Moldovan, S. Nicoara, I. Coroiu, C. Badea, E. Culea, I. Cosma, N. Serban, Fizica: Indrumator de laborator, UT. PRESS, Cluj-Napoca, ISBN 978-973-662-952-5, (2014).
- http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2016-2017/AnICalculatoareEng 2016-2017.html

# 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

### 10. Evaluation

| Activity type                   | Assessment criteria                                                                                                                    | Assessment methods                                                | Weight in the final grade |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|--|--|
|                                 | Theoretical Knowledges accumulated at class, individual study                                                                          | Written test                                                      | 70%                       |  |  |
| Laboratory                      | Practical knowledges (abilities) accumulated in TUCN Laboratory + Individual study (essays on a general Physics subject or practical ) | Essay, Practical Presentation, PPT presentation, written problems | 30%                       |  |  |
| Minimum standard of performance |                                                                                                                                        |                                                                   |                           |  |  |

2.75/10 points (2.75 mark + (2.75 student – 1 default = 1.5) total 4.5 rounded to 5) + all laboratories

Course responsible Prof.dr. Radu Fechete

## 1. Data about the program of study

| 1.1 Institution                    | The Technical University of Cluj-Napoca     |
|------------------------------------|---------------------------------------------|
| 1.2 Faculty                        | Faculty of Automation and Computer Science  |
| 1.3 Department                     | Computer Science                            |
| 1.4 Field of study                 | Computer Science and Information Technology |
| 1.5 Cycle of study                 | Bachelor of Science                         |
| 1.6 Program of study/Qualification | Computer science/ Engineer                  |
| 1.7 Form of education              | Full time                                   |
| 1.8 Subject code                   | 7.1                                         |

## 2. Data about the subject

| 2.1 Subject name                                           |                                                                              |                                         | English I            |                                    |                                                                     |   |  |  |  |
|------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|----------------------|------------------------------------|---------------------------------------------------------------------|---|--|--|--|
| 2.2 Course responsible/lecturer                            |                                                                              |                                         | -                    |                                    |                                                                     |   |  |  |  |
| 2.3 Teachers in charge of seminars/<br>laboratory/ project |                                                                              | Lector dr. Monica Negoescu<br>Emma Adam |                      |                                    |                                                                     |   |  |  |  |
| 2.4 Year of study                                          | I                                                                            | I 2.5 Semester                          |                      |                                    | 2.6 Type of assessment (E - exam, C - colloquium, V - verification) | С |  |  |  |
| 2.7 Subject cotogony                                       | DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară |                                         |                      |                                    | DC                                                                  |   |  |  |  |
| 2.7 Subject category                                       | DI – I                                                                       | Impusă, [                               | 00p – o <sub>l</sub> | Op – opțională, DFac – facultativă |                                                                     |   |  |  |  |

### 3. Estimated total time

| 2                                                                                    | of which:                              | Course                                                                          |                                                                                                                        | Seminars                                                                                                                           | 2                                                                                                                                                             | Laboratory                                                                                                                                   |                                                                                                                                                                                              | Project                                                                                                                                                                                     |                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28                                                                                   | of which:                              | Course                                                                          |                                                                                                                        | Seminars                                                                                                                           | 28                                                                                                                                                            | Laboratory                                                                                                                                   |                                                                                                                                                                                              | Project                                                                                                                                                                                     |                                                                                                                                                                                                     |
|                                                                                      |                                        |                                                                                 |                                                                                                                        |                                                                                                                                    |                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                     |
| (a) Manual, lecture material and notes, bibliography                                 |                                        |                                                                                 |                                                                                                                        |                                                                                                                                    |                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                     |
| (b) Supplementary study in the library, online and in the field                      |                                        |                                                                                 |                                                                                                                        |                                                                                                                                    |                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                     |
| (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays |                                        |                                                                                 |                                                                                                                        |                                                                                                                                    |                                                                                                                                                               |                                                                                                                                              | 22                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                                                                     |
| (d) Tutoring                                                                         |                                        |                                                                                 |                                                                                                                        |                                                                                                                                    |                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                     |
| (e) Exams and tests                                                                  |                                        |                                                                                 |                                                                                                                        |                                                                                                                                    |                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                     |
| (f) Other activities:                                                                |                                        |                                                                                 |                                                                                                                        |                                                                                                                                    |                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                     |
| suma (                                                                               | 3.3(a)3.3                              | 3(f)))                                                                          |                                                                                                                        | 22                                                                                                                                 |                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                     |
| 3.5 Total hours per semester (3.2+3.4) 50                                            |                                        |                                                                                 |                                                                                                                        |                                                                                                                                    |                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                     |
|                                                                                      | and no<br>he libra<br>labora<br>suma ( | of which: and notes, biblio he library, online laboratory work: suma (3.3(a)3.3 | 28 of which: Course and notes, bibliography he library, online and in the laboratory works, homew suma (3.3(a)3.3(f))) | 28 of which: Course and notes, bibliography he library, online and in the fiel (laboratory works, homework, rosuma (3.3(a)3.3(f))) | 28 of which: Course Seminars  and notes, bibliography he library, online and in the field  (laboratory works, homework, reports, ports)  suma (3.3(a)3.3(f))) | 28 of which: Course Seminars 28  and notes, bibliography he library, online and in the field (laboratory works, homework, reports, portfolio | 28 of which: Course Seminars 28 Laboratory  and notes, bibliography he library, online and in the field  (laboratory works, homework, reports, portfolios, essays)  suma (3.3(a)3.3(f)))  22 | 28 of which: Course Seminars 28 Laboratory  and notes, bibliography he library, online and in the field (laboratory works, homework, reports, portfolios, essays)  suma (3.3(a)3.3(f)))  22 | 28 of which: Course Seminars 28 Laboratory Project  and notes, bibliography he library, online and in the field (laboratory works, homework, reports, portfolios, essays)  suma (3.3(a)3.3(f)))  22 |

## 4. Pre-requisites (where appropriate)

3.6 Number of credit points

| 4.1 Curriculum | none                        |
|----------------|-----------------------------|
| 4.8 Competence | Minimum B1, B2 level (CEFR) |

## 5. Requirements (where appropriate)

| 5.1. For the course       | N/A                                                        |
|---------------------------|------------------------------------------------------------|
| 5.2. For the applications | Class attendance, individual study and homework completion |

## 6. Specific competence

| 6.1 Professional competences | N/A                                                                               |
|------------------------------|-----------------------------------------------------------------------------------|
| 6.2 Cross competences        | CT2 – Identifying, describing and conducting processes in the projects            |
|                              | management field, assuming different roles inside the team and clearly and        |
|                              | concisely describing, verbally or in writing, in Romanian and in an international |
|                              | language, the own results from the activity field.                                |

## 7. Discipline objective (as results from the key competences gained)

| 7.1 General objective   | Students should acquire knowledge and integrated skills to communicate in       |  |  |
|-------------------------|---------------------------------------------------------------------------------|--|--|
|                         | English in professional (technical and engineering) contexts and on job related |  |  |
|                         | topics.                                                                         |  |  |
| 7.2 Specific objectives | At the end of this seminar, the students will be able to:                       |  |  |
|                         | - Participate and express their opinion, evaluation and recommendation in       |  |  |
|                         | work-related meetings/events/activities;                                        |  |  |
|                         | - Take notes on specialized topics within their field of specialization;        |  |  |
|                         | - Read and extract specific and general information from a variety of technical |  |  |
|                         | texts;                                                                          |  |  |
|                         | - Write and talk about their own work/professional skills and abilities,        |  |  |
|                         | professional needs and development.                                             |  |  |

## 8. Contents

| 8.1 Lectures                                                          | Hours | Teaching methods       | Notes |
|-----------------------------------------------------------------------|-------|------------------------|-------|
| -                                                                     |       |                        |       |
| Bibliography -                                                        |       |                        |       |
| 8.2 Applications – Seminars/Laboratory/Project                        | Hours | Teaching methods       | Notes |
| Asking and answering questions in a professional meeting. Note-       | 2     |                        |       |
| taking and summarizing information of oral input.                     | 2     |                        |       |
| Extracting and delivering information extracted from written          |       |                        |       |
| specialized text (technical article, product specification, technical |       |                        |       |
| brochure, work memo, product review, report, and proposal) in         | 2     |                        |       |
| written and spoken form to knowledgeable audience and non-            |       |                        |       |
| specialists.                                                          |       |                        |       |
| Comparing and contrasting features of product, process, events,       | 2     |                        |       |
| activities.                                                           |       |                        |       |
| Expressing opinion, in writing or speaking, on topics of general      |       |                        |       |
| professional or job related topics. Complaining about product quality | 2     |                        |       |
| or service.                                                           |       |                        |       |
| Expressing various degrees of certainty, assessing situations, events |       | Presentation of        |       |
| and objects. Expressing outcomes and conditions. Supplying            | 2     | contents, elicitation, |       |
| information to support/refute an argument.                            |       | small-project based    |       |
| Describing events, their time frames, sequence and duration.          | 2     | learning tasks,        |       |
| Preparing a job application file and interview: introducing self and  |       | problem solving tasks, |       |
| describing experience, skills and abilities in writing and speaking,  | 2     | group and pair work,   |       |
| asking and answering questions about job preferences, professional    |       | peer evaluation,       |       |
| needs and development.                                                |       | formative assessment.  |       |
| Making proposals, in writing or speaking, reacting appropriately to   | 2     |                        |       |
| others' proposals, agreeing and disagreeing.                          |       |                        |       |
| Participating and managing participation in work related meetings on  | 2     |                        |       |
| familiar topics within their field of specialization.                 |       |                        |       |
| Using hedges, polite and appropriate language for various work-       |       |                        |       |
| related situations, repairing communication breakdowns or             | 2     |                        |       |
| misunderstandings.                                                    |       | _                      |       |
| Predicting development of events, highlighting main trends and        | 2     |                        |       |
| secondary tracks or less important details.                           |       | _                      |       |
| Supplying spoken and written feedback on technical/work related       | 2     |                        |       |
| topics.                                                               |       |                        |       |
| Expressing modality: necessity, obligation, recommendation on work    | 2     |                        |       |
| related topics.                                                       |       |                        |       |
| End-term test                                                         | 2     |                        |       |

- 2. Biber, D & al. (2009) Longman grammar of spoken and written English, Longman.
- 3. Glendinning, Technology, vol I-II, Oxford University Press, 2008.
- 4. Ibbottson, M. (2010) Cambridge English for Engineering, CUP.

# 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Mastering a foreign language will support students in a more flexible integration in the labour market, and have improved personal development. The introduction in the language for specific purposes and academic discourse will facilitate reading and writing more documents in the field of study, making informed decisions on various types of information, and keeping up-to-date with state of the art knowledge in students' professional field.

#### 10. Evaluation

| Activity type                                                                             | Assessment criteria                  | Assessment methods              | Weight in the final grade |  |  |  |
|-------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------|--|--|--|
| Course                                                                                    |                                      |                                 |                           |  |  |  |
| Seminar                                                                                   | Completion of mid-term and end-term  | On-going class-work evaluation; | Class-work evaluation     |  |  |  |
|                                                                                           | evaluation, homework or individual   | One mid-term test and one end-  | - 30%                     |  |  |  |
|                                                                                           | study solving, attendance to seminar | term test (integrated skills)   | Mid-term test – 30%       |  |  |  |
|                                                                                           |                                      |                                 | End-term test – 40%       |  |  |  |
| Laboratory                                                                                |                                      |                                 |                           |  |  |  |
| Project                                                                                   |                                      |                                 |                           |  |  |  |
| Minimum standard of performance: at least 50% of all components of tasks solved correctly |                                      |                                 |                           |  |  |  |

Teachers in charge of applications Lector dr. Monica Negoescu

Head of department Conf.univ.dr. Ruxanda Literat

<sup>\*</sup>Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.