1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	22.

2. Data about the subject

2.1 Subject name			Systen	Systems Theory				
2.2 Course responsible/led	turer		Assoc.	Assoc. prof. dr. eng. Paula Raica – <u>Paula.Raica@aut.utcluj.ro</u>				
2.3 Teachers in charge of s laboratory/ project	emina	ars/		Conf.dr.ing. Paula Raica, Sl.dr.ing. Iulia Clitan, Asist.dr.ing. Alexandru Codrean, ng. Zoltan Nagy				
2.4 Year of study	П	2.5 Sem	ester	ster 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)				
2.7 Cubiast sateman.	DF -	fundame	entală, DD – în domeniu, DS – de specialitate, DC – complementară					
2.7 Subject category DI – Impusă, I			Ор – ој	oțion	ală, DFac – facultativă	DI		

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography								20		
(b) Supplementary study in the library, online and in the field										
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								20		
(d) Tutoring										
(e) Exams and tests								4		
(f) Other activities:										
3.4 Total hours of individual study (suma	(3.3(a)3.3	3(f)))		44					

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	
3.6 Number of credit points	

4. Pre-requisites (where appropriate)

4.1 Curriculum	Mathematical Analysis_II (Integral calculus and differential equations, Linear
	algebra
4.2 Competence	Differential equations, complex numbers, Laplace transform, linear algebra

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Reading and understanding of the lecture notes.

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (4 credits)
	C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems
	C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and

	communication systems C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
6.2 Cross competences	N/A

7.1 General objective	The general objective of the course is to introduce the fundamental principles of linear system modeling, analysis and feedback control and to evaluate feedback control systems with desired behavior.
7.2 Specific objectives	The specific objectives are to acquire the knowledge and techniques related to: - mathematical system modeling (differential equations, input-output representation as transfer functions, block diagrams) for simple applications - linear system analysis (assessment of stability and performance properties of linear systems) in time and frequency domains - design of feedback controllers such as PID, lead and lag compensators for linear systems using s-domain techniques - linear sampled-data system representation and analysis

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction to systems theory and control engineering. Intoduction to system modeling. Linear approximation.	2		
Input/output models. System response. State-space models.	2		
Conversion between transfer function and state space. Block diagrams.	2		
Linear system analysis. 1 st and 2 nd order systems. Steady-state error.	2		
Higher order systems. Dominant poles. Stability of linear continuous systems.	2	Lecture, visual	
System analysis using root locus.	2	presentations,	
Frequency response. Bode diagrams.	2	demonstrations	
Controller design. Lead-lag compensation.	2		
System analysis. Applications. Midterm exam.	2		
PID – the basic technique for feedback control.	2		
Controlability. Observability. State feedback.	2		
Sampled-data systems.	2		
Digital control systems	2		
Controller design – aplications. Sampled-data systems – applications.	2		

Bibliography

- 1. R. C. Dorf, R. Bishop, "Modern Control Systems", Addison-Wesley, 2004;
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall, 1990.
- 3. K. Dutton, S. Thompson, B. Barraclough, "The Art of Control Engineering", Addison-Wesley, 1997
- 4. William S. Levine (editor), "The Control Handbook", CRC Press and IEEE Press, 1996
- 5. Lecture notes available on the course webpage: http://rocon.utcluj.ro/st

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction to Matlab. Simulation of dynamical systems	4		
Linear approximation of differential equations. Transfer functions. System response.	4	Class discussion, Supervised exercise	
Block diagram models. 1st and 2nd order system analysis. Steady-state error	4	solving using Matlab Miniprojects –	
System stability. Root locus	4	individul student	
Frequency response. Bode diagrams	4	reports	
Lead-lag compensation. PID controllers	4		

State feedback. Sampled-data systems.		
Bibliography		
1. Paula Raica, "Control Engineering. Exercises", Editura Mediamira, 200)1	
2 Lecture notes available on the course webpage: http://rocon.utclui.ro	n/st	

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course content combines theoretical knowledge with applications and focuses on the formulation and solution of specific problems that may occur in various engineering fields. Application of the control theory concepts are specific to most of the engineering disciplines. The course level is introductory and the intent is to motivate and prepare students for further study in related areas and to conduct projects in real-life applications.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Ability to solve exercises related to linear system modeling and analysis Ability to solve exercises related to system design and analysis of sampled-data systems	Midterm exam – writen examination Final exam - writen examination	40% 60%
Seminar			
Laboratory	Answer simple questions from the topic of the lab applications	Lab tests (optional)	30% (optional, but may contribute to a higher grade)
Project			

Minimum standard of performance:

Solution of simple exercises applying the knowledge and techniques presented in the course.

40% Midterm grade + 60%Final grade + 30%Lab grade > 5

Course responsible Conf.dr.ing. Paula Raica

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	23.

2. Data about the subject

2.1 Subject name			Compu	Computer Architecture					
2.2 Course responsible/lecturer			S.l.dr.ii	S.l.dr.ing. Mihai Negru – Mihai.Negru@cs.utcluj.ro					
2.3 Teachers in charge of seminars/ laboratory/ project				Conf.dr. ing. Florin Oniga, S.l.dr.ing. Mihai Negru, { Florin.Oniga, Mihai.Negru }@cs.utcluj.ro					
2.4 Year of study	II 2 5 Semester 2 2.6 Type of assessment (E - exam, C - colloquium, V -			2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E				
DF – fundame		ntală, D	D — î	n domeniu, DS – de specialitate, DC – complementară	DD				
2.7 Subject category	DI – I	OI – Impusă, DOp – opțională, DFac – facultativă							

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material	and no	tes, biblio	graphy							28
(b) Supplementary study in the library, online and in the field							14			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								23		
(d) Tutoring								0		
(e) Exams and tests								4		
(f) Other activities:							0			
3.4 Total hours of individual study (suma	(3.3(a)3.	3(f)))		69					

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	69
3.5 Total hours per semester (3.2+3.4)	125
3.6 Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 Curriculum	Logic design >= 5
	Digital system design >= 5
4.3 Competence	Ability to design digital circuits and to implement them in VHDL

5. Requirements (where appropriate)

5.1. For the course	blackboard, video projector, laptop
5.2. For the applications	desktop/laptop computer, Xilinx ISE / VIVADO, FPGA development boards

6.1 Professional competences	C2 – Designing hardware, software and communication components (5 credits)					
	C2.1 – Describing the structure and functioning of computational,					
	communication and software components and systems					
	C2.2 – Explaining the role, interaction and functioning of hardware, software and					
	communication components					
	C2.3 – Building the hardware and software components of some computing					
	systems using algorithms, design methods, protocols, languages, data structures,					

	and technologies C2.4 — Evaluating the functional and non-functional characteristics of the computing systems using specific metrics C2.5 — Implementing hardware, software and communication systems
6.2 Cross competences	N/A

7.1 General objective	Knowing and understanding the concepts of organization and functioning for central processing units, memories, input/output, and using these concepts for design.
7.2 Specific objectives	 Applying methods for representation and design at system level for digital circuits Instruction Set Architecture (ISA) specification Writing simple programs in assembly languages and machine code Specification, design, implementation, and testing of Central Processing Units (CPU) – micro architecture – data path – command units Understanding memory organization and I/O operations Understanding modern trends in computer architectures

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction	2		
High-Level Synthesis	2		
Instruction Set Architecture (ISA)	2		
CPU Design - Single Cycle CPU	2		
Computer Arithmetic and Simple Arithmetic Logic Units	2	Oral presentation	
CPU Design - Multi Cycle CPU Data path	2	backed up by	
CPU Design - Multi Cycle CPU Control	2	multimedia equipment, interactive	
CPU Design – Pipelined CPU	2	communication,	
Advanced Pipelining – Static and Dynamic Scheduling of the Execution	2	blackboard problem	
Branch Prediction	2	Joiving	
Superscalar Architectures	2		
Memory	2		
I/O and Interconnection Structures	2		
Problem solving	2		
		·	

Bibliography

- 1. D. A. Patterson, J. L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface",5th edition, ed. Morgan–Kaufmann, 2013.
- 2. D. A. Patterson and J. L. Hennessy, "Computer Organization and Design: A Quantitative Approach",5th edition, ed. Morgan-Kaufmann, 2011.
- 3. Vincent P. Heuring, et al., "Computer Systems Design and Architecture", Addison-Wesley, USA, 1997.
- 4. A. Tanenbaum, "Structured Computer Organization", Prentice Hall, USA, 1999.
- 5. MIPS32 Architecture for Programmers, Volume I: "Introduction to the MIPS 32™ Architecture".
- 6. MIPS32 Architecture for Programmers, Volume II: "The MIPS 32™ Instruction Set".

Online bibliography

M. Negru, F. Oniga, S. Nedevschi, Lecture slides http://users.utcluj.ro/~negrum

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction in the Xilinx ISE environment and the FPGA development board	2	Blackboard quick overview of key issues,	
Design and Implementation of Combinational CPU Components	2	exercises,	
Design and Implementation of Sequential CPU Components	2	experimenting with	
Design of a Single Cycle CPU 1 (MIPS)	2	FPGA development	
Design of a Single Cycle CPU 2 (MIPS)	2	boards with specialized	

Design of a Single Cycle CPU 3 (MIPS)	2	IDEs for circuit design	
Design of a Single Cycle CPU 4 (MIPS)	2	and implementation	
Midterm practical evaluation on the FPGA board	2	(Xilinx ISE)	
Pipelined CPU Design	2		
Pipelined CPU Design	2		
Pipelined CPU Design	2		
Pipelined CPU interfacing	2		
Practical evaluation of the pipelined CPU on the FPGA board	2		
Final Tests and Evaluation	2		

Online bibliography

M. Negru, F. Oniga, S. Nedevschi, Laboratory guide http://users.utcluj.ro/~negrum

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Computer Architecture is one of the fundamental subjects of the Computer Science and Information Technology field. It combines fundamental and practical aspects used for digital circuits design and implementation. The content of this subject is harmonized with the specific curricula of other national and international universities, and is evaluated by the Romanian government agencies (CNEAA and ARACIS). The practical aspects involve getting familiar with and using development products and tools provided by companies from Romania, Europe, and USA (ex. Xilinx, Digilent).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Testing the theoretical knowledge, the ability of problem solving, presence and activity	Written exam	50%
Laboratory	Practical ability to solve and implement specific problems related to processor design, presence and activity	Lab exam, periodical assessment of results	50%
Project			_

Minimum standard of performance:

Knowing the fundamental theory of the subject, the ability to design and implement a processor with a reduced set of instructions.

Grade calculus: 50% lab + 50% final exam

Conditions for participating in the final exam: Lab ≥ 5

Conditions for promotion: Final exam ≥ 5

Course responsible S.l.dr.ing. Mihai Negru

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	24.

2. Data about the subject

2.1 Subject name			Numei	Numerical methods			
2.2 Course responsible/le	cturer		Prof. dr. Dumitru Mircea Ivan – mircea.ivan@math.utcluj.ro				
2.3 Teachers in charge of laboratory/ project	semin	ars/	Prof. dr. Daniela ROSCA – <u>daniela.rosca@math.utcluj.ro</u> S.l. Mircia GURZAU – <u>mircia@gurzau@math.utcluj.ro</u>				
2.4 Year of study	II	2.5 Sem	2.6 Type of assessment (E - exam. C - colloquium. V -			E	
2.7 Cubicat catagony	DF -	– fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară			DF		
2.7 Subject category DI – Impusă, I			00p – o _l	oțion	ală, DFac – facultativă	DI	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material	and no	tes, biblio	graphy							15
(b) Supplementary study in the library, online and in the field							10			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							15			
(d) Tutoring							0			
(e) Exams and tests							4			
(f) Other activities:							0			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 44										

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Basic knowledge of Differential and Integral Calculus
4.4 Competence	Competences in elementary Differential and Integral Calculus: derivatives,
	integrals, series.

5. Requirements (where appropriate)

5.1. For the course	Videoprojector
5.2. For the applications	Videoprojector

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (5 credits) C1.1 - Recognizing and describing specific concepts to calculability, complexity, programming paradigms and modeling of computing and communication systems C1.2 - Using specific theories and tools (algorithms, schemes, models, protocols,
	etc.) for explaining the structure and the functioning of hardware, software and

	communication systems C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed
	systems
6.2 Cross competences	N/A

7.1 General objective	A presentation of the concepts, notions, methods and fundamental techniques used in differential calculus.
7.2 Specific objectives	Use of the differential calculus in order to solve problems in engineering.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Elements of Error Theory. Floating Point Arithmetic. Absolute and	2		
Relative Errors.			
Numerical Methods in Linear Algebra. Special Types of Matrices.	4		
Norms of Vectors and Matrices. Eigenvalues and Eigenvectors. Error			
Estimation. Matrix Equations. Pivoting Elimination. Improved			
Solutions of Matrix Equations. Partitioning Methods for Matrix			
Inversion. LU Factorization. Doolittle's Factorization. Choleski's			
Factorization Method. Iterative Techniques for Solving Linear			
Systems. Jacobi Iterative Method. Gauss-Seidel Iterative Method.			
Relaxation Methods. Characteristic Polynomial: Leverrier Method.			
Characteristic Polynomial: Fadeev-Frame Method.			
Solutions of Nonlinear Equations. Method of Successive	4		
Approximation. The Bisection Method. The Newton-Raphson			
Method. The Secant Method. False Position Method. The Chebyshev			
Method. Numerical Solutions of Nonlinear Systems of Equations.			
Newton's Method for Systems of Nonlinear Equations. Steepest		Explanation	
Descent Method.			
Elements of Interpolation Theory. Lagrange Interpolation. Divided	6	Demonstration	
Difference. Mean Value Properties in Lagrange Interpolation.		Demonstration	
Approximation by Interpolation. Hermite Interpolating Polynomial.		Collaboration	
Finite Differences. Interpolation of Multivariable Functions. Scattered		Conaboration	
Data Interpolation. Shepard's Method. Splines. B-splines.		Interactive activities	
Elements of Numerical Integration. Richardson's Extrapolation.	4		
Numerical Quadrature. Error Bounds in the Quadrature Methods.			
Trapezoidal Rule. Richardson's Deferred Approach to the Limit.			
Romberg Integration. Newton-Cotes Formulas. Simpson's Rule.			
Gaussian Quadrature.		_	
Elements of Approximation Theory. Discrete Least Squares	4		
Approximation. Orthogonal Polynomials and Least Squares			
Approximation. Rational Function Approximation. Padé			
Approximation. Trigonometric Polynomial Approximation. Fast			
Fourier Transform. Bernstein Polynomial. Bézier Curves. METAFONT.		_	
Integration of Ordinary/Partial Differential Equations. The Euler	4		
Method. The Taylor Series Method. The Runge-Kutta Method. The			
Runge-Kutta Method for Systems of Equations. Integration of Partial			
Differential Equations. Parabolic Partial-Differential Equations.			
Hyperbolic Partial Differential Equations. Elliptic Partial Differential			
Equations.			

Bibliography

- 1. Dumitru Mircea Ivan. Calculus. Editura Mediamira, Cluj-Napoca, 2002. ISBN 973-9358-88-8.
- 2. Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Mediamira, Cluj-Napoca, 2003. ISBN

973-9357-41-5.

- 3. Ioan-Adrian Viorel, Dumitru Mircea Ivan, and Loránd Szabó. Metode numerice cu aplicaţii în ingineria electrică. Editura Universităţii din Oradea,
- 4. Mircea Ivan and Kálmán Pusztai. Mathematics by Computer. Comprex Publishing House, Cluj-Napoca, 1992.

8.2 Applications – Seminars/Laboratory/Project		Teaching methods	Notes
The applications follow the topics of the courses.	28	Explanation Demonstration Collaboration Interactive activities	

Bibliography

- Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Mediamira, Cluj-Napoca, 2003. ISBN 973-9357-41-5.
- 2. Ioan-Adrian Viorel, Dumitru Mircea Ivan, and Loránd Szabó. Metode numerice cu aplicaţii în ingineria electrică. Editura Universităţii din Oradea,

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Abilities of understanding and using creatively the concepts and proofs	Written examination	30%
Seminar			
Laboratory	Abilities of solving problems and applying algorithms	Written examination	70%
Project			
Minimum standar	d of norformance.	·	_

Minimum standard of performance:

Ability to present coherently a theoretical subject and to solve problems with practical content.

Course responsible Prof.dr. Dumitru Mircea IVAN

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	25.

2. Data about the subject

2.1 Subject name			Fundamental Programming Techniques			
2.2 Course responsible/lecturer Prof. dr. eng. Ioan Salomie - Ioan.Salomie@cs.utcluj.ro						
2.3 Teachers in charge of seminars/ Assoc.prof. dr. eng. Tudor Cioară,, Sl. dr. eng. Cristina.Pop, As. Drd. Marc laboratory/ project As.drd. Claudia Pop, As. Drd. Dorin Moldovan			el Antal,			
2.4 Year of study	П	2.5 Sem	ester	2	2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E
DF – fundame			ntală, DD – în domeniu, DS – de specialitate, DC – complementară			
2.7 Subject category	DI – I	DI – Impusă, DOp – opțională, DFac – facultativă				

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars	Laboratory	28	Project	
3.3 Individual study:									
(a) Manual, lecture material	and no	otes, biblio	graphy						10
(b) Supplementary study in the library, online and in the field							16		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						14			
(d) Tutoring									
(e) Exams and tests						4			
(f) Other activities:									
3.4 Total hours of individual study	(suma	(3.3(a)3.	3(f)))		44				

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Fundamentals of Object Oriented Programming
4.5 Competence	Knowledge of Object Oriented Programming

5. Requirements (where appropriate)

5.1. For the course	Blackboard, projector, computer, internet
5.2. For the applications	Computers, specific software, internet

6.1 Professional competences	C4 - Improving the performances of the hardware, software and communication
	systems
	C4.1 - Identifying and describing the defining elements of the performances of
	the hardware, software and communication systems
	C4.2 - Explaining the interaction of the factors that determine the performances
	of the hardware, software and communication systems
	C4.3 - Applying the fundamental methods and principles for increasing the
	performances of the hardware, software and communication systems

	C4.4 - Choosing the criteria and evaluation methods of the performances of the				
	hardware, software and communication systems				
	C4.5 - Developing professional solutions for hardware, software				
	communication systems based on performance optimization				
6.2 Cross competences	N/A				

7. Discipline objective (as results from the key competences gainea)				
7.1 General objective	Knowledge and using of object-oriented programming techniques for the			
	development of professional software applications			
7.2 Specific objectives	-to use programming techniques for designing of classes and interfaces, including			
	contracts and invariants;			
	-to use programming techniques for code reuse by inheritance and			
	polymorphism			
	-to use generic programming techniques for collection processing			
	-to use programming techniques for reflection and event based			
	-to use programming techniques for concurrent and multi-threading			
	programming			
	-to use object-oriented and functional programming in an integrated approach			
	for the development of flexible and efficient programs			
	-to use design patterns and frameworks			
	-to use programming techniques for performance and software maintenance			

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Programming techniques with classes and interfaces	2		
Programming techniques using inheritance and polymorphism	2	-Using modern	
Programming techniques using contracts and invariants	2	multimedia teaching	
Generic programming techniques	2	methods and direct access	
Reflection techniques	2	to internet;	
Event-driven techniques	2	-Challenging questions	
Collection programming techniques		during lecturers -Students are invited to	
Concurrent and multithreading techniques	2	collaborate in research	
Flexibility and reuse through design patterns	2	projects	
Main design patterns of type creational, structural and behavioral	2	-Personal assistance hours	
Flexibility and reuse through frameworks	2	the semester and before	
Lambda Expressions and Stream processing	2	the exam	
Multiparadigm (functional and OO) programming techniques	2		
Programming techniques for efficiency and performance	2		

Bibliography

- 1. Ioan Salomie Tehnici Orientate Obiect, Editura Albastra, Microinformatica, 1995
- 2. Eric Gamma, Helm, Johnson, Vlissides Design Patterns, Addison Wesley, 1995 (translated into Romanian by Teora Publ. as "Sabloane de Proiectare")
- 3. Joshua Bloch Effective Java, 2/e Addison Wesley, 2008
- 4. Ioan Salomie, Note de Curs, http://www.coned.utcluj.ro/~salomie/TP

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Intro to lab resources and requirements	2	-Lab sessions with pre-	
Assignment 1 - Programming with inheritance and polymorphism	4	defined exercises and	
Assignment 2 - Programming with contracts (pre and post conditions)	4	assignments -Using modern	
and invariants	4	multimedia teaching	
Assignment 3 Programming with multiple threads	4	methods and direct access	
Assignment 4 – Programming with design patterns	4	to internet;	

Assignment 5 – Programming with generics and Java Collection Framework	4	-Students are invited to collaborate in research	
Assignment 6 – Multi-paradigm programming	4	projects -Personal assistance hours	
Lab Evaluation	2	during the semester and before the exam	

- Steve McConnell Code Complete, 2/e, Microsoft Press, 2004
- http://docs.oracle.com/javase/tutorial/index.html
- http://stackoverflow.com/

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Fundamental Programming Techniques is a subject of the domain "Computers and Information Technology". It teaches students to apply object-oriented programming techniques in designing and implementing of software applications. The content was developed based on the analysis of similar disciplines from other universities as well as based on the requirements of the IT employees. The content was also evaluated by Romanian governmental agencies CNEAA and ARACIS.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	How the students are using programming techniques for: (i) designing of classes and interfaces, including contracts and invariants; (ii) promote code reuse by inheritance and polymorphism; (iii) using generic programming techniques for collection processing; (iv) using programming techniques for concurrent and multi-threading programming; (v) using object-oriented and functional programming in an integrated approach for the development of flexible and efficient programs; (vi) using design patterns and frameworks	written exam	50%
Laboratory	-Abilities to effectively specify, design, implement and test quality and performance object – oriented programs -Quality of assessment deliverables -Activity during lab sessions -Presence to lab sessions	-Assessment of programming assignments -Written exam	50%

Minimum standard of performance:

-To be able to use object-oriented programming techniques in designing and implementing software applications

Grade calculus: 40% laboratory + 60% final exam

Conditions for participating in the final exam: Laboratory ≥ 5

Handing over all laboratory assignments and obtain a minimum grade of 5 on each assignment; At least 11 laboratory presences.

Conditions for promotion: final exam ≥ 5

Obtain a minimum grade of 5 for each category of exam questions (theory and problem).

Course responsible Prof.dr.eng. Ioan Salomie

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	26.

2. Data about the subject

2.1 Subject name			Operating Systems			
2.2 Course responsible/led	turer		Conf. dr. eng. Adrian Coleşa – adrian.colesa@cs.utcluj.ro			
Conf. dr. eng. Adrian Coleşa – <u>adrian.colesa@cs.utcluj.ro</u> Eng. Radu Ciocas – <u>rciocas@bitdefender.com</u> Eng. Gergo Janos Szeles - <u>jszeles@bitdefender.com</u> Eng. Razvan Teslaru - <u>rteslaru@bitdefender.com</u>						
			Eng. Alexandru Brîndușe - <u>abrinduse@bitdefender.com</u>			
2.4 Year of study	П	2.5 Sem	nester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E	
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară		DD				
2.7 Subject category DI – Impusă,		mpusă, L	DOp – opțională, DFac – facultativă			DI

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material	and no	tes, biblio	graphy							25
(b) Supplementary study in t	he libr	ary, online	and in th	ne fiel	d					10
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						28				
(d) Tutoring							2			
(e) Exams and tests						4				
(f) Other activities:							0			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 69										
3.5 Total hours per semester (3.2+3	3.4)				125					
3.6 Number of credit points					5					

4. Pre-requisites (where appropriate)

4.1 Curriculum	Computer Programming, Data Structures and Algorithms
4.6 Competence	C programming

5. Requirements (where appropriate)

5.1. For the course	Blackboard / Whiteboard, Beamer
5.2. For the applications	Computers, Linux, Windows, Blackboard / Whiteboard

6.1 Professional competences	C3: Problems solving using specific Computer Science and Computer Engineering
	tools (3 credits)
	• C3.1 : Identifying classes of problems and solving methods that are specific to
	computing systems

	• C3.2: Using interdisciplinary knowledge, solution patterns and tools, making
	experiments and interpreting their results
	• C3.3 : Applying solution patterns using specific engineering tools and methods
	• C3.4 : Evaluating, comparatively and experimentally, the available alternative solutions for performance optimization
	• C3.5 : Developing and implementing informatic solutions for concrete problems
	C4 : Improving the performances of the hardware, software and communication systems (2 credits)
	• C4.1 : Identifying and describing the defining elements of the performances of the hardware, software and communication systems
	• C4.2 : Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
	• C4.3 : Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems
	• C4.4 : Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
	• C4.5 : Developing professional solutions for hardware, software and communication systems based on performance optimization
6.2 Cross competences	N/A

7.1 General objective	Provide the students a clear understanding of what an OS is, its role and general functionality and the ability to use fundamental system calls of an OS.			
7.2 Specific objectives	Let the students:			
	Know and understand the OS specific terminology.			
	2. Understand the general structure and functionality of an OS.			
	3. Understand the specific functionality of the most important OS components,			
	like shell, process manager, file system, memory manager, security manage			
	4. Understand the functionality of main synchronization mechanisms and			
	able to use them to solve real synchronization problems.			
	5. Be able to write C programs to use an OS's (Linux and Windows) system			
	calls.			

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction and basic concepts. OS's definition, role, evolution, components, main concepts (file, process, system calls). Basic hardware aspects: CPU, user and kernel mode, memory layers, I/O devices. Basic OS structure.	2	(1) use beamer slides, combined with blackboard illustration;	
The Shell (Command Interpreter). Definition, role, functionality, simple and complex commands. Standard input and output redirection.	2	(2) interactions with students: ask their	
File systems (1) . User Perspective. File and directory concept from the user point of view (definition, role, characteristics, operations).	2	students: ask their opinion relative to the presented subject;	
File systems (2). Windows and Linux File Systems. Permission rights and system calls.	2	(3) give each class a	
File systems (3) . Implementation aspects. Implementation strategies overview, space management and related problems, hard and symbolic links.	2	short evaluation test; let students discuss and argue each other	
Process management . Process model: definition, role, characteristics. Linux and Windows process management system calls.	2	their solution; give them the good solution and let them	

Thread management . Thread model: user vs. kernel threads, implementation problems, usage, performance aspects. Basic scheduling algorithms (FIFO, SJF, Priority-based). Linux and Windows process thread system calls.	2	evaluate their own one; (4) propose 2-3
Process synchronization (1) . Theoretical aspects. Context, definition, synchronization mechanisms, techniques and problems (locks, semaphores, monitors, mutual exclusion, starvation, deadlock).	2	interesting study cases of OSes to be prepared and
Process synchronization (2). Classical synchronization patterns: producer/consumer, readers/writers, rendez-vous, barrier, dining philosopher, sleeping barber. Similarities between different synchronization mechanisms.	2	presented by students; (5) students are
Inter-process communication . Pipe files, shared memory, message queues, signals.	2	invited to collaborate in research projects.
Memory management (1) . Context, definition, binding, basic techniques, space management, addresses translation, swapping.	2	
Memory management (2). Paging and segmentation.	2	
I/O Devices Management . Principles, disks, clocks, character-oriented terminals.	2	
Security aspects . Security policies and mechanisms. Basic program's vulnerabilities (buffer overflow).	2	

- 1. Andrew Tanenbaum. *Modern Operating System*, 2nd Edition, Prentice-Hall, 2005, ISBN 0-13-092641-8.
- 2. A. Silberschatz, P. Galvin, G. Gagne, Operating Systems Concepts, 8th Edition, Wiley, 2010
- 3. Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, online available at http://pages.cs.wisc.edu/~remzi/OSTEP/

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Laboratory presentation: Purpose, contents, strategies, requirements.Get familiar with Linux OS: main characteristics, basic commands, access rights.	2	(1) students are	
Linux batch scripts : basic Linux commands, command line structure, scripts, command line parameters, variables, control flow commands, functions.	2	presented a very brief overview of the most important and difficult	
Linux system calls to access data in files : basic system calls to store and retrieve data to and from regular user files: open, read, write, Iseek, close.	2	aspects of the working subject;	
Linux system calls for file and directory manipulation: system calls to rename or remove a file, link a file to more directories, get information about a file or directory, change permission rights and listing a directory contents.	2	(2) students are given at the beginning of	
Windows case: NTFS and FS system calls.	2	each class a short	
Linux system calls for process management : system calls for creating a new process, terminating an existing process, waiting for a child process to terminate, loading another executable into an existing process etc.	2	evaluation quiz; (3) students are given a hands-on tutorial to	
Linux threads : Linux implementation of POSIX functions used to create and manage threads: pthread_create, pthread_join, pthread_exit etc.	2	practice with working subject's aspects and	
Synchronization mechanisms (1) : Linux semaphores. Linux system calls to create and use semaphores: semget, semctl, semop.	2	to solve problems	
Synchronization mechanisms (2): POSIX locks and condition variables. Linux functions used to create and use POSIX locks and condition variables: pthread_mutex_lock, pthread_mutex_unlock, pthread_cond_wait, pthread_cond_signal.	2	(4) students are given challenging problems for extra credit;	
Windows Case : process and thread system calls, synchronization mechanisms.	2		

Inter-process Communication Mechanisms (IPC) : Linux named (FIFO) and nameless pipes. System calls for managing and using pipes: pipe and mkfifo.	2	
Memory management : ELF executable file format. Virtual vs. physical address space. Dynamically allocated memory.	2	
Memory management: memory-mapped files, shared memory.	2	
Security aspects: buffer overflow detection and correction.	2	

- 1. Lecture slides and laboratory text and support at http://moodle.cs.utcluj.ro/
- 2. M. Mitchell, J. Oldham, A. Samuel, Advanced Linux Programming, New Riders Publishing, 2001

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

OS knowledge is a fundamental requirement in the CS field. We follow the ACM curricula guide. We also consult relevant IT companies about their practical expectations regarding OS knowledge and adapt accordingly our course contents. In this sense, Linux and Windows are the most used OSes. Usually the teachers in charge of lab classes are former graduate students of our CS program with consistent experience in industry. They are permanently consulted regarding the OS course curriculum and its applicability in real projects in industry.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Students must understand fundamental OS concepts and be able to correctly define them. They must also be able to apply their knowledge to solve user-space problems related to or dependent by an OS.	Small problem-like subjects requiring students to apply the theoretical learned OS related aspects to give a solution to proposed problem.	0.67
Seminar			
Laboratory	Students must be able to develop C programs that use different OS system calls to solve practical, problems related to or dependent by an OS.	Quiz tests. Programming problems, whose solution has to be implemented in C and run on computers.	0.33
Project			

Minimum standard of performance:

Students must attend minimum **9 lecture classes** to be allowed to take the exam in the regular exam session. Students must attend minimum **7 lecture classes** to be allowed to take the exam in any re-examination sessions. Less than 7 attended lecture classes leads to the interdiction to take any course re-examination in the university year the course is taught

Students must attend minimum **12 lab classes** to be allowed to take the exam in the regular exam session. Students must attend minimum **10 lab classes** to be allowed to take the exam in any re-examination sessions. Less than 10 attended lab classes leads to the interdiction to take any lab re-examination in the university year the course is taught.

Students are allowed to take the final course examination only after passing the lab examination.

Be able to define the fundamental OS principles and concepts, like process, thread, file, directory, lock, semaphore, paging.

Be able to write C program to use fundamental system calls in Linux for working with files, processes, threads, synchronization mechanisms and memory.

Course responsible Conf.dr.ing. Adrian Colesa

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectuluis

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	27.

2. Data about the subject

2.1 Subject name		Computer Assisted Graphics				
2.2 Course responsible/le	cturer	er Prof.dr.eng. Gorgan Dorian – dorian.gorgan@cs.utcluj.ro				
2.3 Teachers in charge of	semin	minars/ Lect.dr.eng. Bacu Victor, As.eng. Constantin Nandra,				
laboratory/ project			{victor.bacu, constantin.nandra}@cs.utcluj.ro			
2.4 Year of study	II	II 2.5 Semester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)			Е	
2.7 Cubicat astasanı	DF -	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară D			DF	
2.7 Subject category DI – Impusă, E			00p – o _l	pțion	ală, DFac – facultativă	DI

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars	Laboratory	28	Project	
3.3 Individual study:									
(a) Manual, lecture material	and no	tes, biblio	graphy						20
(b) Supplementary study in the library, online and in the field					6				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays					10				
(d) Tutoring									3
(e) Exams and tests					5				
(f) Other activities:					0				
3.4 Total hours of individual study	suma	(3.3(a)3.	3(f)))		44				

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Computer programming (C language)
4.7 Competence	Applications development in C programming language

5. Requirements (where appropriate)

5.1. For the course	Projector, computer
5.2. For the applications	Laboratory attendance is mandatory
	Study of laboratory materials from the server

6.1 Professional competences	C3 – Problems solving using specific Computer Science and Computer
	Engineering tools (4 credits)
	C3.1 – Identifying classes of problems and solving methods that are specific to
	computing systems
	C3.2 – Using interdisciplinary knowledge, solution patterns and tools, making
	experiments and interpreting their results
	C3.3 – Applying solution patterns using specific engineering tools and mehods

	C3.4 – Evaluating, comparatively and experimentally, the available alternative
	solutions for performance optimization C3.5 – Developing and implementing informatic solutions for concrete problems
6.2 Cross competences	N/A

7.1 General objective	Learning about the architecture of a graphic system, the study of the graphic pipeline, the study of 2D graphic algorithms			
7.2 Specific objectives	 Creation of the graphical model of a scene of objects Implementation of the basic algorithms that form the core of a graphic system Development of graphic applications in a high-level programming language (C, C++) Implementation of the main phases of the graphic transformation pipeline 			

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction. History. Examples	2		
Graphics systems – architecture, standards	2		
Graphics devices – logic and physics devices, input, output and interactive devices	2		
Graphics transformations pipeline – 2D and 3D transformations. Matrix operators	2	New multimedia teaching approaches	
Mathematics in computer graphics	2	will be used in classes.	During the semester and before each exam there are a few preparation
Lines scan conversion algorithms	2	The course is interactive and includes demonstrations that	
Circles scan conversion algorithms	2		
Polygons scan conversion algorithms	2		
Clipping algorithms – point, line, polygon and text	2		
Projections and viewing transformations	2		hours
Photorealistic presentation of 3D objects – concepts, algorithms, examples	2	exemplify graphical methods and	planned.
Color models – color perception, color space and standards, color in software design	2	algorithms.	
Graphics formats – vector and raster formats, data compression , Web technologies	2		
Graphics pattern grammars	2		

Bibliography

- 7. Foley J.D., van Dam, A., Feiner, S.K., Hughes, J.F., "*Computer Graphics. Principles and Practice*". Addison-Wesley Publishing Comp., 1992.
- 8. Watt A., "3D Computer Graphics". Addison-Wesley, 1998.

In virtual library

Course resources, http://cgis.utcluj.ro/teaching/

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction to SDL	2		Each student
Mathematics in computer graphics: vectors	2	Documentation and	will have to
Mathematics in computer graphics: matrices	2	examples will be	develop a
Graphics transformations	2	available to the	specific
Graphics transformations in SDL	2	students, prior to the	project based
Line rasterization using the Bresenham algorithm	2	laboratory classes, on a dedicated server.	on the
Clipping algorithms for graphical primitives	2	The students will work	knowledge
Viewing transformations	2	independently but will	acquired at
Triangle rasterization using barycentric coordinates	2	also be assisted by the	the
Intermediate assessment	2	teacher.	laboratory
Hidden surface removal using the z-buffer algorithm	2		hours.

Bezier curves	2
Color computation	2
Final assessment	2
Riblingraphy	

In virtual library

Course and practical works, http://cgis.utcluj.ro/teaching/

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline is integrated into the Computers and Information Technology domain. The content is classic, yet modern, and introduces to students the fundamentals of graphic systems and 2D algorithms. The content of this discipline has been aligned with the information presented in similar disciplines from other major universities and companies from Romania, Europe and USA and has been evaluated by the authorized Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	The written exam evaluates the understanding of the information presented in classes and the ability to apply this knowledge.	Evaluation is performed through written exam.	60% (E)
	The activity in class evaluates the active involvement of the students in the teaching process and their participation to the discussions, debates and other class activities during the entire semester.	Evaluation is performed through a very short tests.	10% (AC)
Seminar			
Laboratory	Laboratory assessment evaluates the practical abilities obtained by the students. Through homework assignments the students have the opportunity to develop their skill in applying the notions, concepts and methods presented in class.	Evaluation is performed through written and practical exam.	40% (L)
Project			
Minimum standard	of performance:		

Course responsible Prof.dr.ing. Dorian Gorgan

Graduation requirement: M≥5; final mark M=0.5*E+0.4*L+0.1*AC

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	28.

2. Data about the subject

2.1 Subject name Foreign Language II (English, French, German - Technical documents elaboration)						
2.2 Course responsible/led	cturer	turer Lector dr. Sanda Paduretu				
2.3 Teachers in charge of s laboratory/ project	semin	ars/	-			
2.4 Year of study	П	2.5 Sem	emester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)			С
2.7.6	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară DC				DC	
2.7 Subject category DI – Impusă, D		Op – opțională, DFac – facultativă			DI	

3. Estimated total time

3.1 Number of hours per week	2	of which:	Course	2	Seminars	Laboratory	Project	
3.2 Number of hours per semester	28	of which:	Course	28	Seminars	Laboratory	Project	
3.3 Individual study:								
(a) Manual, lecture material	and no	otes, biblio	graphy					
(b) Supplementary study in t	he libr	ary, online	and in th	ne fie	ld			
(c) Preparation for seminars,	'labora	atory work	s, homew	vork,	reports, portfo	lios, essays		22
(d) Tutoring								
(e) Exams and tests								
(f) Other activities:								
3.4 Total hours of individual study	suma	(3.3(a)3.	3(f)))		22			
3.5 Total hours per semester (3.2+3	3.4)				50			
3.6 Number of credit points	•				2			

4. Pre-requisites (where appropriate)

4.1 Curriculum	None
4.8 Competence	Minimum B2 level (CEFR)

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Class attendance, individual study

6. Specific competence

6.1 Professional competences	N/A
6.2 Cross competences	CT3 – Demonstrating the spirit of initiative and action for updating professional,
	economical and organizational culture knowledge (2 credits)

7. Discipline objective (as results from the key competences gained)

	
7.1 General objective	Students should acquire knowledge and integrated skills to communicate in a

	foreign language in professional (technical and engineering) contexts and on job related topics.
7.2 Specific objectives	At the end of this course, the students will be able to: - identify and apply the main principles of effective communication in English - read and write using effective academic and technical writing techniques; -participate and express their opinion, evaluation and recommendation in technical exchange of information; -take notes on specialized topics within their field of specialization; -have the necessary skills read and write scientific articles -read and extract specific and general information from a variety of technical texts;

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction to communication. Communication in an academic setting. Communication at work.	2		
The writing process. Features and stages of the writing process.	2		
Readability. Characteristics and formulae for readability.	2		
Improving readability. Web-page / computer programming readability.	2		
Fundamentals of effective technical writing.	2		
Overview of technical and scientific language used in written communication. Best words and phrases. Reading grammar. Formal and informal language.	2	Lecture by teacher,	
Paragraphs. What is a paragraph? Elements of a paragraph. Development of a paragraph.	2	drill and practice, class discussion, questions	
Basic types of documents. User manuals, technical reports.	2	and answers, textbook	
Citation: plagiarism, paraphrasing, summary, academic conventions	2	/ reading assignments,	
Plagiarism I: Complexities of definition. Plagiarism in Academic contexts. The Academy's response to plagiarism	2	formative assessment	
Plagiarism II: Learning to write from sources. The "shock" of referencing. Avoiding plagiarism.	2		
Plagiarism III: The art of finding plagiarism. Types of academic misconduct (ghost-writing, contract cheating, falsifying data).	2		
Plagiarism IV: Student's research on typologies of plagiarism.			
Assignment discussion. Identifying main types (copy-paste, verbatim, translations, disguised, shake and paste, clause quilts, structural, cut and slide, self-plagiarism).	2		
Style. Final conclusion.	2		

Bibliography

- 1. Marinela Granescu, Ema Adam, Effective academic and technical writing, UTPress, Cluj-Napoca, 2010
- 2. Justine Jobel, Writing for Computer Science: the art of effective communication, Springer Verlag, Melbourne, 2000
- 3. Simon Haines, Real writing with answers, Cambridge University Press, 2008
- 4. R.R. Jordan, Academic writing course, Nelson, 1992

8.2 Applications – Seminars/Laboratory/Project		Teaching methods	Notes
-			
Bibliography			

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Mastering the elements of effective academic and technical writing will help the students in the field of computer science to integrate better in the labour market and improve personal development. The introduction in the

language for specific purposes and academic discourse will facilitate reading and writing more documents in the field of study, making informed decisions on various types of information, and keeping up-to-date with state of the art knowledge in students' professional field. Most engineers or scientists work in organizational settings where team work is essential and good team work is impossible without good communication.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade	
Course	Completion of end-term evaluation, individual study, attendance to course	On-going class-work evaluation, and one end-term test (integrated skills)	Class-work evaluation - 20% End-term test – 80%	
Seminar				
Laboratory				
Project				
Minimum standard of performance: at least 50% of all components of tasks solved correctly.				

Course responsible Lect.dr. Sanda Paduretu

Head of department Conf.univ.dr. Ruxanda Literat

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	29.

2. Data about the subject

2.1 Subject name			Sport II				
2.2 Course responsible/lecturer					,		
2.3 Teachers in charge of seminars/ laboratory/ project		ars/	As.dr.	As.dr. Adrian Suciu			
2.4 Year of study	II	2.5 Semester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)			V		
2.7 Cubicat asteromy					DC		
2.7 Subject category DI – Impusă, E		00p – op	Op – opțională, DFac – facultativă				

3. Estimated total time

3.1 Number of hours per week	2	of which:	Course	Semin	irs	2	Laboratory	Project	
3.2 Number of hours per semester	2	of which:	Course	Semin	ırs	28	Laboratory	Project	
3.3 Individual study:									
(a) Manual, lecture material	and no	tes, biblio	graphy						
(b) Supplementary study in t	he libr	ary, online	and in th	e field					
(c) Preparation for seminars,	[/] labora	itory work	s, homew	ork, reports	port	folic	s, essays		
(d) Tutoring									
(e) Exams and tests									22
(f) Other activities:									
3.4 Total hours of individual study	suma	(3.3(a)3.	3(f)))	2:					

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	22
3.5 Total hours per semester (3.2+3.4)	50
3.6 Number of credit points	2

4. Pre-requisites (where appropriate)

4.1 Curriculum	
4.9 Competence	physically fit, necessary skills, knowledge, skills and abilities gained in classes I-XII

5. Requirements (where appropriate)

5.1. For the course	Muncii Blvd, no.103-105, Cluj-Napoca, Politehnica Swimming Complex
5.2. For the applications	Sports Hall, Muncii Blvd, no.103-105, Cluj-Napoca
	Outdoor and Fitness - Complex Polytechnic

6. Specific competence

6.1 Professional competences	N/A
6.2 Cross competences	CT2 – Identifying, describing and conducting processes in the projects
	management field, assuming different roles inside the team and clearly and
	concisely describing, verbally or in writing, in Romanian and in an international
	language, the own results from the activity field.

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Harmonious physical development Maintain health at a high standard
7.2 Specific objectives	Capacity development effort Learning and motor skills development Education volitional qualities

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
-			
Bibliography	•		
-			
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Improvement and maintenance of health, athletic ability and fitness	4		
Improving tehnical exercises learned before using tactic tasks	4		
Automatization of technical and tactics in game conditions (competition).	4		
Learning regulations of different sports, to be able to practice and organize leisure-time sport activity.	4	interactive	
Necessary skills to practice independent physical activity	4		
Improving the drills, combinations, schemes in different sport games	4		
Close the school situation by passing physical test	4		

Bibliography

- 1. Curs de Educație fizică Litografiat UTC-N
- 2. Dezvoltare fizică generală pentru studenți UTC-N
- 3. Cultură fizică pentru tineret UTPRES

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Sports activity there in the curriculum of universities and faculties in the country and abroad. Content is consistent with the expectations of professional associates and employers epistemic community representative of the afferent program.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course			
Seminar	70% + 30% Frequency Active Participation, sports skills and advances	By passing control samples	100%
Laboratory			
Project			
Minimum standars	l of norformance.	_	

Minimum standard of performance:

Fulfilling the criteria of evaluation with emphasis on active participation in class, advancements, sports skills.

Course responsible As.dr. Adrian Suciu

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	105.

2. Data about the subject

2.1 Subject name			Elemei	Elements of mechanics			
2.2 Course responsible/lecturer			Şef luc	Şef lucr. dr. ing. Sergiu-Dan Stan			
2.3 Teachers in charge of s laboratory/ project	emina	ars/	Şef lucr. dr. ing. Sergiu-Dan Stan				
2.4 Year of study	II	2.5 Sem	ester	ster 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)			
2.7 Cubicat catagons	DF -	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară					
2.7 Subject category	DI – I	Impusă, [00p – o _l	Dp — opțională, DFac — facultativă			

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	2	Laboratory	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars	28	Laboratory	Project	
3.3 Individual study:									
(a) Manual, lecture material	and no	tes, biblio	graphy						15
(b) Supplementary study in the library, online and in the field						5			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						16			
(d) Tutoring						5			
(e) Exams and tests						3			
(f) Other activities:						•			
3.4 Total hours of individual study	(suma	(3.3(a)3.	3(f)))		44				

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Physics, Mathematics
4.10Competence	Mathematics, Physics,

5. Requirements (where appropriate)

5.1. For the course	Whiteboard, projector, computer
5.2. For the applications	Reading and understanding of the lecture notes.

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science
	concepts
	C1.1 – Recognizing and describing concepts that are specific to the fields of
	calculability, complexity, programming paradigms, and modeling computational and communication systems
	C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and
	communication systems

	C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gamea)						
7.1 General objective	 The general objective of the course is to introduce the fundamental principles of mechanical systems, to know the structure, functioning, design fundamentals of mechanical systems that integrates mechanical components, electrical and software technology. To know the main types of mobile mechanical systems (mechanisms), fundamentals of theory of mechanisms, robot mechanisms and flexible fabrication systems, basic problems in the study of them, used terminology as well as CAD methods of approaching them. 					
7.2 Specific objectives	 The specific objectives are to acquire the knowledge and techniques related to: usage of methods to determine the functional parameters of different mechanical systems; to use the mathematical formulae, software package to simulate the different mechanical systems, robot mechanisms, to analyse and evaluate the experimental data used in mechanical engineering; to understand, to analyse and compare technical solutions specific to mechanical engineering. 					

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
1. Introduction to mechanical engineering, design and realization of			
mechatronics systems. V-model as the standard process model for	2		
mechatronic system development, mechatronics design	2		
methodology.			
2. Structural analysis of linkages. Degree of Freedom, Classification of	2		
Mechanisms.	2		
3. Position Analysis of Mechanisms. Joint variables, Loop Closure	2		
Equations, Solution Techniques for Loop Closure Equations.	2		
4. Kinematic analysis of linkages. Transfer function method.	2		
5. Dynamic analysis of linkages.	2		
6. Mechanical Power Transmission. Bar Linkages.	2		
7. Variators. Continuously variable transmission (CVT). Belt drives.	2		
Chain drive.	2		
8. Couplings, gearbox, gears, reducers and timing belts. Simple Gear	2	Lecture, visual	
Trains, Planetary Gear Trains.	2	presentations,	
9. The role of dynamics and kinematics of robotic devices in design of		demonstrations	
mechatronics systems. Kinematics and dynamics of robotic type			
devices, articulation, speed, accuracy, bandwidth, inertia, vibration,	2		
static and dynamic loading, materials, integration of design			
requirements.			
10. Serial robots. Introduction. Direct and inverse kinematics			
problems, Examples of kinematics of common serial robots,	2		
workspace of a serial robot.			
11. Parallel robots. Degrees-of-freedom of parallel mechanisms and			
manipulators, Active and passive joints, Constraint and loop-closure			
equations, Direct kinematics problem, Mobility of parallel	2		
manipulators, Closed-from and numerical solution, Inverse	2		
kinematics of parallel manipulators and mechanisms, Direct			
kinematics several parallel robots.			

12. Robot Jacobians for serial and parallel manipulators, Velocity ellipse and ellipsoids, Singularity analysis for serial and parallel robots.	2	
13. Exoskeleton systems. Hardware Design of the Exoskeleton systems. Mechanical Design. Actuators.	2	
14. Flexible systems of fabrication.	2	

- 1. Handra-Luca, V., Mecanisme, Ed.UT Pres, Cluj-Napoca, 1981.
- 2. Handra-Luca, V., ş.a. Introducere în teoria mecanismelor, Editura Dacia, Cluj-Napoca, vol. I-II, 1982, 1983.
- 3. Maros, D., ş.a. Mecanisme, Indrumător de lucrări, Lito. I.P.C-N, Cluj-Napoca, 1984.
- 4. **** journals (library of TU Cluj-Napoca)
- 5. **** internet

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Identification of basic elements from the structure of mechanical systems (linkages). Kinematic schema and construction design.	2		
2. Elements of CAD design, modelling and simulation of mechanical			
structures. Construction variants of mechanical systems. Specific	2		
materials from the mechanical systems.			
3. Position analysis linkages. Problems.	2		
4. Kinematic analysis of linkages. Problems.	2		
5. Dynamic analysis of linkages.	2		
6 Study of Mechanical Power Transmission.	2		
7. Variators. Continuously variable transmission, gear trains	2		
problems.	2		
8. Kinematics and dynamics of robotic systems.	2		
9. Examples of kinematics of common serial robots, workspace of a serial robot.	2		
10. Inverse kinematics of parallel manipulators and mechanisms, workspace of several parallel robots.	2		
11. Inverse kinematics of parallel robots.	2		
12. Singularity analysis for serial and parallel robots.	2		
13. Study of the hardware Design of the Exoskeleton systems.	2		
Mechanical Design.			
14. Study of flexible systems of fabrication.	2		

Bibliography

- 1. Handra-Luca, V., Mecanisme, Ed.UT Pres, Cluj-Napoca, 1981.
- 2. Handra-Luca, V., ş.a.— Introducere în teoria mecanismelor, Editura Dacia, Cluj-Napoca, vol.

I-II, 1982, 1983.

- 3. Maros, D., ş.a. Mecanisme, Indrumător de lucrări, Lito. I.P.C-N, Cluj-Napoca, 1984.
- 4. **** journals (library of TU Cluj-Napoca)
- 5. **** internet

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Application of the mechanical engineering concepts are specific to most of the engineering disciplines.

The course level is introductory and the intent is to motivate and prepare students for further study in mechanical engineering areas and to conduct projects in real-life applications.

The course content combines theoretical knowledge with applications and focuses on the formulation and solution of specific problems that may occur in various engineering fields.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Knowledge	Midterm exam	40%

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

	Knowledge	Final exam	60%
Seminar	Answer simple questions from the topic of the lab applications Submitting and defending a miniproject on a given subject	Lab tests (optional) Individual student report (optional)	20%
Laboratory			
Project			
Minimum standard of performance:			

Solution of simple exercises applying the knowledge and techniques presented in the course.

Course responsible Şef lucr. dr. ing. Sergiu-Dan Stan

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	106.

2. Data about the subject

2.1 Subject name			Didactica specialității tehnice/ Teaching Methods			
2.2 Course responsible/led	urse responsible/lecturer Prof. Dr. ing. Carmen BAL – carmen.bal@dppd.utcluj.ro					
2.3 Teachers in charge of seminars/ Assist drd. ing. luhos Carmen Ioana – ioana.iuhos@dppd.utcluj.ro laboratory/ project						
2.4 Year of study	П	II 2.5 Semester			2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E
2.7 Cubicat catagons				DC		
2.7 Subject category DI – Imple		Impusă, [00p – o _l	oțion	ală, DFac – facultativă	DFac

3. Estimated total time

i			1	,	·				
3.1 Number of hours per week	4	of which:	Course	2	Seminars	2	Laboratory	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars	28	Laboratory	Project	
3.3 Individual study:									
(a) Manual, lecture material	and no	tes, biblio	graphy						25
(b) Supplementary study in the library, online and in the field					20				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays					20				
(d) Tutoring									
(e) Exams and tests					2				
(f) Other activities:					2				
3.4 Total hours of individual study (suma ((3.3(a)3.	3(f)))		69				

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	69
3.5 Total hours per semester (3.2+3.4)	125
3.6 Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 Curriculum	didactica disciplinelor tehnice
4.11Competence	

5. Requirements (where appropriate)

5.1. For the course	•	Sala de curs
5.2. For the applications	•	Prezența la laborator este obligatorie

6.1 Professional competences	C1. Operarea cu metodelor şi procedeelor utilizate în predarea disciplinelor tehnice, a instrumentelor de predare-învăţare şi a instrumentelor de evaluare pentru aceste discipline din planul de învăţământ.		
	 C1.1. Cunoașterea noțiunilor de didactică și a celor de curriculum . C1.2. Folosirea corectă a metodelor de învățământ în cadrul lecțiilor de specialitate tehnică. C1.3. Utilizarea corectă a obiectivelor și strategiilor didactice în cadrul lecțiilor de specialitate tehnică. 		

	 C1.4. Însuşirea de către studenți a obiectivelor generale ale învățării disciplinelor de specialitate tehnică în şcoală. C1.5. Utilizarea corectă a metodelor şi instrumentelor de evaluare în cadrul lecțiilor de specialitate tehnică. C2. Prezentarea unor modele de proiecte didactice.
6.2 Cross competences	CT3 - Autoevaluarea obiectivă și diagnoza nevoii de formare profesională continuă în scopul inserției pe piața muncii și al adaptării la dinamica cerințelor acesteia și pentru dezvoltarea personală și profesională. Autocontrolul învățării și utilizarea eficientă a cunoștințelor de didactica specialității tehnice, dezvoltă o buna gestionare a activităților personale, precum și cea de comunicare.

7.1 General objective	Însuşirea de către studenți a conceptelor de bază de proiectare didactică a metodelor şi strategiilor de predare învăţare - evaluare, a tehnicilor de formare a echipelor de lucru, planificare a timpului şi întocmirea documentaţiei didactice necesare în procesul de predare - învăţare - evaluare.
7.2 Specific objectives	 Formarea competențelor de organizare, proiectare şi evaluare a activităților didactice la disciplinele tehnice. Utilizarea adecvată a conceptelor reformei curiculare. Formarea competențelor de proiectare curriculară în domeniul disciplinelor tehnice. Înțelegerea necesității operaționalizării obiectivelor educaționale Cunoașterea metodelor de învățământ utilizate la predarea disciplinelor tehnice. Cunoașterea formelor de organizare a activității elevilor la disciplinele tehnice. Formarea competențelor de evaluare la disciplinelor tehnice.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Conținutul învățământului tehnic. Conceptul de Curriculumul. Componentele Curriculum-ului Național. Clasificare	2	Expunerea dialogul, problematizarea.	
Organizarea activității didactice. Conceptul de lecție. Tipuri de lecții.		Exemplificare, dialog,	
Strategii didactice a profesorului de specialitate. Integrarea mijloacelor de învăţământ în procesul de predare - învăţare - evaluare a disciplinelor de specialitate.	2	comunicarea euristică	
Metode specifice de predare –învăţarea a disciplinelor de specialitate tehnică. Criterii de alegere a metodelor de învăţământ;	2	Comunicare euristică, problematizarea, dialogul	
Proiectarea demersului didactic pentru filiera tehnologică, profil tehnic. Planificarea calendaristică;	2		
Proiectarea unității de învățare; Proiectarea activității didactice	2	Comunicare euristică, problematizare, studiu de caz,	
Exigente in stabilirea si formularea obiectivelor educaționale. Niveluri de definire a obiectivelor educaționale; Obiective cadru, obiective de referința, obiective operaționale	2	Studiu de caz, realizarea unui mini proiect de lecţie.	
Competente generale, competente; specifice. Transpunerea competențelor în obiective operaționale; Metodologia operaționalizării obiectivelor	2		
Mijloace de învățământ	2	Conversaţia euristică,	
Alegerea mijloacelor de învățământ în funcție de tipul de lecție	2	problematizarea.	
Evaluarea și funcțiile ei;	2		
Metode de evaluare. Clasificarea acestora	2	Problematizarea, lucrul în	
Instrumente de evaluare folosite în cadrul lecţiilor .		grupe, studiu de caz.	

Itemi şi clasificarea itemilor de evaluare.	2		
---	---	--	--

- 1. Ciot, Gabriela Elemente de pedagogie și teoria și metodologia curriculumului, Ed. Universității din Oradea , 2003.
- 2. Carmen Bal, Noțiuni de didactica specialității tehnice, Editura UTPRES Cluj Napoca, 2007;
- 3. Jurcău Nicolae, Carmen Bal (coordonator și coautor), Metodica disciplinelor tehnice, Editura UTPRES;
- 4. Jurcău Nicolae, Carmen Bal (coordonator și coautor), Didactica disciplinelor tehnice, Editura UTPRES, Cluj Napoca, 2006:
- 5. Jurcău, N., Pedagogie, , U.T.Pres, Cluj, 2001;r
- 6. Jurcău, N., Metodica predării disciplinelor tehnice, Atelierul de multiplicare al Institutului Politehnic, Cluj, 1984
- 7. Ionescu, M. Lecția între proiect și realizare, Ed. Dacia, Cluj 1982

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Finalitățile și obiectivele studierii disciplinelor tehnice - exemple de programe școlare din cadrul curriculum-ului Tehnologii.	4	Lucrul pe grupe de 4, cu materiale didactice, plan invatamant, programa şcolară.	
Conținutul lecției - exemple de lucru.	4	Lucrul pe echipe de	
Realizarea unui planificări calendaristice orientative – aplicație.Obiectivele lecției și modul de fixare a acestora în cadrul unei lecții.	4	recunoaștere și fixare de obiective și competențe în funcție de diferite conținuturi și tipuri de lecții.	
Studiu privind metodele de predare-învăţare eficiente pentru atingerea obiectivelor	4	Întocmirea de documente didactice și realizarea de	
Eficientizarea metodelor de învăţământ - studiu de caz	4	proiecte de lecţie.	
Proiectarea didactică. Realizarea unui planificări calendaristice orientative.	4	Realizarea diferitelor proiecte de lecție	
Obiectivele lecției și modul de fixare a acestora în cadrul unei lecții.	4	Întocmirea unui portofoliu didactic.	

Bibliography

- Ciot, Gabriela Elemente de pedagogie și teoria și metodologia curriculumului, Ed. Universității din Oradea , 2003.
- Carmen Bal, Noţiuni de didactica specialităţii tehnice, Editura UTPRES Cluj Napoca, 2007;
- Jurcău Nicolae, Carmen Bal (coordonator și coautor), Metodica disciplinelor tehnice, Editura UTPRES;
- Jurcău Nicolae, Carmen Bal (coordonator şi coautor), Didactica disciplinelor tehnice, Editura UTPRES, Cluj Napoca,
 2006;
- Jurcău, N., Pedagogie, , U.T.Pres, Cluj, 2001;
- Jurcău, N., Metodica predării disciplinelor tehnice, Atelierul de multiplicare al Institutului Politehnic, Cluj, 1984
- Ionescu, M. Lecția între proiect și realizare, Ed. Dacia, Cluj 1982
- Consiliul Naţional pentru Curriculum Ghid metodologic pentru aplicarea programelor şcolare, TEHNOLOGII, Liceu tehnologic-profil tehnic, Editat de Aramis Print, 2002.
- Curriculum Naţional. Programe şcolare pentru clasa a IX-a. Volumele 1-3, M.E.N., C.N.C. Editura Cicero, Bucureşti, 1999

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Disciplina este una fundamentală în cadrul modului de psihopedagogie şi transmite studenților noțiuni menite să le dezvolte abilitățile de proiectare didactică, utilizarea eficientă a metodelor şi strategiilor de predare - învățare – evaluare.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course			
Seminar	activitate la seminar – 20%; portofoliu (elaborare proiecte didactice și teste de evaluare) – 40%;		50% din punctajul evaluarii finale + 50% din punctajul evaluarii

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

	examinare finală – 40%.		finale.	
Laboratory				
Project				
Minimum standard of performance:				
predarea proiectului de lectie;				
predarea unui set de probe de evaluare: obtinerea a 50 % din punctajul verificării finale.				

Course responsible Prof. Dr. ing. Carmen Bal