1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	30.

2. Data about the subject

2.1	Subject name			Desi	Design with Microprocessors						
2.2	2 Subject area			Com	Computer Science and Information Technology						
2.3	2.3 Course responsible/lecturer			Conf	Conf. dr. eng. Tiberiu Marita – tiberiu.marita@cs.utcluj.ro						
2.4	Teachers in charge of applications			Conf	Conf. dr. eng. Tiberiu Marita – tiberiu.marita@cs.utcluj.ro						
					SI. d	r. eng. Mihai N	Negru – <u>miha</u>	i.negr	u@cs.utcluj.ro		
2.5	Year of study	Ш	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur	Ар	plica	tion	Lectur	App	licat	tion	Individual		
	·	е		s		е		s		study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	L	Р			
5	Design with Microprocessors	2	-	1	1	28	-	14	14	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	application	2
							S	
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	application	28
	- 1						S	
Individual study							Hours	
Manual, lecture material and notes, bibliography							28	
Supp	olementary study in the library, online	and in th	e field	1				14
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						28		
Tutoring						0		
Exams and tests						4		
Other activities						0		

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer Architecture, Computer Programming			
4.2	Competence	Hardware design, Assembly language programming, C language programming			

5. Requirements (where appropriate)

5.1	For the course	Black-board/ White-board, projector, computer
5.2	For the applications	Computer, Atmel Studio, Arduino IDE, Arduino & RPi development
		boards, Pmods and several other components, modules, sensors etc.

6. Specific competences

C2 – Designing hardware, software and communication components (2 credits)
C2.1 – Describing the structure and functioning of computational, communication and software components and systems
C2.2 – Explaining the role, interaction and functioning of hardware, software and communication components
C2.5 - Implementing hardware, software and communication systems
C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (3 credits)
C5.2 - Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field
C5.5 - Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

N/A

7. Discipline objectives (as results from the key competences gained)

	ooipiirio objectives (as results from	are ney competences games,
7.1	General objective	Knowledge, understanding and use of concepts like microprocessor/microcontroller, bus, memory system, data transfer methods, interface circuits and peripheral devices interfacing, analysis and design of microprocessor systems.
7.2	Specific objectives	 To achieve the main objective, specific objectives are pursued: Knowledge of microprocessors and microcontrollers features and capabilities: hardware capabilities, instruction set architecture, assembly language, and programming solutions. Knowledge of hardware components used with the microprocessors: electrical and logical characteristics, connection modes. Development of skills to find solutions based on microprocessors or microcontrollers for real problems with average complexity. Acquaintance with microcontroller development boards and their software programming tools.

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes	
1	Lecture Overview. Introduction to MP based systems (AVR MCU family)			
2	AVR registers and instructions			
3	AVR I/O ports and interrupts	Oral blookboord		
4	Input/output and interrupts for Arduino systems	Oral, blackboard	N/A	
5	AVR timers. Timing events with Arduino	and multimedia,		
6	Serial data communication. Serial data transfer with Arduino	interactive		
7	Analog signals processing	teaching style,		
8	Microcontroller based applications: usage of sensors	consultations, involvement of		
9	Microcontroller based applications: usage of actuators	students in		
10	Introduction to the 8086 microprocessor family	research /		
11	I/O transfer	design.		
12	Memory interfacing	acoign.		
13	3 Simple I/O interfaces. Parallel interfaces			
14				
Riblio	graphy	•	•	

Bibliography

- 1. B. B. Brey, "INTEL Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Prentium ProProcessor, Pentium II, III, 4", ed. 7, Prentice Hall, 2005
- 2. S. Nedevschi, "Microprocesoare", Editura UTCN, 1994.

- 3. M.A. Mazidi, S. Naimi, S. Naimi, AVR Microcontroller and Embedded Systems: Using Assembly and C, Prentice Hall, 2010, ISBN 9780138003319.
- 4. M. Margolis, Arduino Cookbook, 2-nd Edition, O'Reilly, 2012.

Online:

5. http://users.utcluj.ro/~tmarita/PMP/PMPcurs.htm

8.2.	Applications (Laboratory, Projects)	Teaching methods	Notes
Labo	oratory		
1	Introduction to the Arduino boards		
2	Applications with simple I/O modules	Presentation on	
3	Working with the LCD shield and the interrupt system	the blackboard,	
4	Usage of timers	experiments on	
5	Communication interfaces	microcontroller	
6	Software serial interface. Analogue keyboard	development	
7	Analogue signals processing	boards (Cerebot) use of specialized IDE	N/A
Proje	ects		
1	Project: specification	design tools	
2	Project: study	(AVR Studio),	
3	Project: logic design	involvement of	
4	Project: implementation	students in	
5	Project: implementation	research /	
6	Project: optimization, testing and validation	design.	
7	Project: assessment.	3	

Bibliography

- 1. Atmel ATmega2560 8 bit AVR Microcontroller datasheet, http://www.atmel.com/lmages/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561 datasheet.pdf
- 2. Arduino Mega 2560, http://arduino.cc/en/Main/ArduinoBoardMega2560
- 3. Abdul Maalik Khan, AVR Project Book, http://www.digisoft.com.pk/products/avr-project-book
- 4. Mike McRoberts, Beginning Arduino, 2-nd Edition, Technology in Action.
- 5. M. Margolis, Arduino Cookbook, 2-nd Edition, O'Reilly, 2012.

Online:

- 6. http://users.utcluj.ro/~tmarita/PMP/PMPcurs.htm
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course is in the Computer and Information Technology field. Its contents combine fundamentals with specific aspects of the used hardware and software tools, accustoming students with the design principles for microprocessor based systems. The course content was discussed with other universities in the country and abroad, and in conjunction with products /development tools offered by companies in Romania, Europe and the USA (e.g. Digilent, Atmel, Arduino, RaspberyPi) and is rated by the Romanian government agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2	Assessment	10.	Weight in the final
			methods	3	grade
Course	Testing theoretical knowledge and problem solving skills		Written exam		50 %
Applications	Practical skills for problem solving and implementation of specific problems for applications design. Attendance and activity		Colloquium, lab. work and project evaluation		50 %

10.4 Minimum standard of performance

Modeling and implementation of typical engineering problems using the theoretical models and applicative tools specific to the domain.

Course responsible Conf.dr.eng. Tiberiu Marita

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	31.

2. Data about the subject

2.1	2.1 Subject name				Logic	Logic Programming					
2.2	2.2 Subject area				Com	Computer Science and Information Technology					
2.3 Course responsible/lecturer				Prof.	Prof. dr. eng. Rodica Potolea – Rodica.Potolea@cs.utcluj.ro						
2.4	2.4 Teachers in charge of applications				Assoc. prof. dr. eng. Tudor Mureşan –						
	Tudor.Muresan@cs.utcluj.ro										
						SI. d	r. eng. Camel	ia Lemnaru –	Cam	elia.Lemnaru@c	s.utcluj.ro
2.5	Year of study	Ш	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur	Ар	plica	tion	Lectur	App	olicat	ion	Individual		
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]		[hours / semest			ster]					
			S	L	Р		S	L	Р			
5	Logic Programming	2	1	2	-	28	14	28	-	60	130	5

3.1	Number of hours per week	5	3.2	of which, course	2	3.3	application	3
							S	
3.4	Total hours in the teaching plan	70	3.5	of which, course	28	3.6	application	42
							S	
Individual study							Hours	
Man	ual, lecture material and notes, bibliog	graphy						28
Supplementary study in the library, online and in the field						10		
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, es	says			14
Tutoring						3		
Exams and tests						5		
Other activities						0		

01110	1 401111100	
3.7	Total hours of individual study	60
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Fundamental Algorithms, Programming
4.2	Competence	Logic

5. Requirements (where appropriate)

	or regardene (more appropriate)					
5.1	For the course	Whiteboard, projector, computer				
5.2	For the applications	Computer software specific (SICStus Prolog). This lab required.				

6. Specific competences

	C2 Designing hardware, software and communication components (5 credit points) C2.1 Describing the structure and functioning of computational, communication and software components
Professional competences	and systems C2.2 Explaining the role, interaction and functioning of hardware, software and communication components C2.3 Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies C2.4 Evaluating the functional and non-functional characteristics of the computing systems using specific metrics C2.5 Implementing hardware, software and communication systems
Cross	N/A

7. Discipline objectives (as results from the key competences gained)

1.0	scipilite objectives (as results from	the key competences gamea)
7.1	General objective	The major goal of discipline is the accumulation of symbolic knowledge processing / logic, and competent description of specifications in logical format directly executable. The assessment also developed logical application performance.
7.2	Specific objectives	Semantics statement and procedures Extra-logical operators Meta-programming Data Structures in logic programming techniques associated with estimating efficiency Structure incomplete, list difference Types of recursion with advantages and limitations Development of complex applications

8. Contents

8.1. L	ecture (syllabus)	Teaching	Notes
		methods	
1	Introduction, first order logic declarative and procedural semantics	Interactive	
2	First order logic declarative and procedural semantics (continued)	Course.	
3	Negation as failure; Backtracking and cut		
4	Prolog programming techniques	Teaching	
5	Prolog programming techniques (continued)	examples,	
6	Prolog programming techniques (continued)	questions and	
7	Prolog programming techniques (continued)	discussion.	
8	Metalogic predicates		
9	Extra-logic predicates	Evaluating the	
10	Nondeterministic Programming	absorption of	
11	Incomplete data structures; difference lists	knowledge.	
12	Search techniques		
13	Search techniques (continued)		
14	Search techniques (continued)		
3iblio	graphy	·	·

- L. Sterling, E. Shapiro, *The Art of Prolog*, MIT Press, 1994.
 W.F. Clocksin, C.S. Mellish, *Programming în Prolog*, Springer-Verlag Telos, 1994.
 R. Potolea, *Programare Logică*, vol 1,U.T.Pres, 2007.

	, , , , ,		
8.2.	Applications (Seminars, Laboratory)	Teaching methods	Notes
1	Prolog language	Painting	Seminar -
2	Sets, sorting	workshop /	troubleshooti
3	Lists	laboratory	ng on board.
4	Basic operations on lists	individual with	Laboratory -
5	Incomplete lists; difference lists	specific topics.	computer

6	Trees	Troubleshooting	troubleshooti			
7	Searching in trees	with tracing and	ng.			
8	Incomplete trees	performance	(individual)			
9	Modeling control structures in Prolog	evaluation.				
10	Graphs					
11	Searching in graphs					
12	Basic graphs algorithms					
13	Metaprogramming					
14	Hands on evaluation	practical checks	mandatory			
Biblio	Bibliography					
	T. Museana D. Datalaa E. Tadayan A.D. Cusiu. Dyaayayaya Janiak	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	h - u - t - u			

- 1. T. Mureşan, R. Potolea, E. Todoran, A.D. Suciu, *Programare Logică Indrumător de Laborator*, Romsver, 1998.
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Classical discipline of the Computer and Information Technology domain, which develops the ability to formulate executable specifications in a logical language (standard Prolog, Prolog Sictus). Discipline enables the assimilation of knowledge and build skills useful to other disciplines (family AI), and useful in fundamental research / applied. Ability to analyze specifications form and context in a unified solution, following partial and total accuracy and efficiency.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2	Assessment	10.	Weight in the final
			methods	3	grade
Course	Troubleshooting using specific		Partial Exam (PE)		20% +50%
	techniques		(written) + Final		
			Exam (FE) (written		
			and / or oral)		
Applications	Problem solving		Practical test (Lab)		30%
			(PC)		

10.4 Minimum standard of performance

Note=0.2*PE+ 0.3*Lab+ 0.5*FE. The condition for participation in the final exam: Lab> = 5. Condition promotion Note> = 5

Course responsible Prof.dr.eng. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	32.

2. Data about the subject

2.1	Subject name					Functional Programming							
2.2	2.2 Subject area						Computer Science and Information Technology						
2.3	.3 Course responsible/lecturer						Assoc. prof. eng. Adrian Petru Groza – Adrian.Groza@cs.utcluj.ro						
2.4	Teachers in charge of applications						Lect. dr. eng. Radu Slavescu –						
	Radu.Razvan.Slavescu@cs.utcluj.ro												
						Lect.	dr. eng. Anca	a Mărginean -	- anca	a.marginean@cs	<u>.utcluj.ro</u>		
2.5	Year of study	Ш	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject	DID/OB		
										category			

3. Estimated total time

Sem	Subject name	Lectur Application e s		Lectur e	Application s				TOTAL	Credit		
		[hours / week.]		[hours / seme:			mes	ster]				
			S	L	Р		S	L	Р			
5	Functional Programming	2	-	2	-	28	-	28	-	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	application	2	
							S		
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	application	28	
							S		
Individual study									
Manual, lecture material and notes, bibliography									
Sup	plementary study in the library, online	and in th	ne field	t				14	
Prep	paration for seminars/laboratory works	, homew	ork, re	eports, portfolios, es	says			28	
Tutoring									
Exams and tests									
Other activities									
0.7 Total become of individual attack.									

00	. 4011711100	
3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculur	m		
4.2	Competer	nce		

5. Requirements (where appropriate)

	or reduitable (miles approp	
5.1	For the course	Basic notions of programming
5.2	For the applications	Linux

6. Specific competences

		C2 Designing hardware, software and communication components (4 credits)
		C2.1 Describing the structure and functioning of computational, communication and software components
	S	and systems
	9	C2.2 Explaining the role, interaction and functioning of hardware, software and communication
	ţe	components
	эdı	C2.3 Building the hardware and software components of some computing systems using algorithms,
	ΩO	design methods, protocols, languages, data structures, and technologies
	<u></u>	C2.4 Evaluating the functional and non-functional characteristics of the computing systems using specific
	Suc	metrics
	Professional competences	
	Ę	C4 Improving the performances of the hardware, software and communication systems (1 credit)
	Pro	C4.1 Identifying and describing the defining elements of the performances of the hardware, software and communication systems
		C4.3 Applying the fundamental methods and principles for increasing the performances of the hardware
		and software
ŀ		N/A
	es	
	Cross competences	
	Cross	
	OB	
	Ō	
1		

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Increasing the ability to develop more correct and concise code
7.2	Specific objectives	Writing better code with the concepts introduced by functional programming: high order functions, lazy evaluation, lambda calculus, infinite structure.

8. Contents

8.1. I	Lecture (syllabus)	Teaching	Notes
		methods	
1	Introduction. Programming Paradigms		
2	Basic concepts of programming in Hugs, ML, Lisp: functions, constants,		
	primitive data types, recursion, tuples, infix operators, evaluation.		
3	Basic concepts: local declarations, polymorphism.		
4	Lists: list construction, basic operations on lists.	Slides,	
5	Lists: polymorphic equality.	Various student	
6	Lists: list operators (generators, filters, list expressions).	engagement	
7	Trees: alternative data, pattern matching, exceptions, binary trees (list-	techniques	
	tree conversions).	New examples	
8	Trees: binary trees (binary search trees, AVL balanced trees, examples	Quick individual	
	(operations on sets)).	work (1 minute)	
9	Trees: binary trees (examples (Huffman codes)), propositional reasoner	Homework after	
	(example).	each class	
10	Higher-order functions: anonymous functions, partial application, functions	dicusssed at the beginning of the	
	as data, data as functions, combinator functions, functionals for lists (list	next class.	
	operator style, style without lists).	TIEXI CIASS.	
11	Infinite data: lazy evaluation, unbounded objects, circular structures.		
12	Transformation and reasoning: structural induction, equivalence of		
	functions, structural induction on trees, induction on number of nodes,		
	general principle of induction.		
13	Lambda calculus: Lambda notation, conversions, combinators.		
14	Para-functional programming: basic language, mapped expressions,		
	eager expressions.		

Bibliography

- 1. Haskell A Purely Functional Language, http://www.haskell.org/
- 2. I.A. Leţia, Programare funcţională, Ed. UTPres, UTCN, 1996.
- 3. H. Conrad Cunningham, Notes on Functional Programming with Haskell, 2007
- 4. Raul Rojas, A Tutorial Introduction to the Lambda Calculus, FU Berlin, WS-97/98

8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Lisp objects, form evaluation, primitive Lisp functions.		
2	Internal representation, control of evaluation, function definition.		
	Recursion and iteration.		
3	Scope of variables, iterative forms. LAMBDA-expressions, higher-order		
	functions, mapping.		
4	Association lists, properties, arrays and structures. Macrodefinitions,		
	functions as data, surgery.	New examples	
5	Trees in Lisp. Graphs and backtracking.	Tracing	
6	Pattern matching. Symbolic processing.	algorithms Midterm assessment	
7	Lisp microinterpreter. Review of programming in Lisp, in preparation for		
	the lab test.		
8	Lab test (Programming in Lisp).	Miniprojects	
9	ML Lists, Recursion,.		
10	ML type checking		
11	ML Trees		
12	Haskell – High order functions		
13	Haskell -Lazy evaluation, circular lists, infinite lists.		
14	Lab test (Programming in ML and Haskell).		

Bibliography

- 1. I.Ā. Leţia, E.Şt. Chifu, C. Cenan, Programare funcţională. Îndrumător de laborator, Ed. Casa cărţii de ştiinţă, 1999.
- 2. David S. Touretzky, Common Lisp: A Gentle Introduction to Symbolic Computation, The Benjamin/Cummings Publishing Company,Inc, 1989
- 3. Andrew Cumming, A gentle introduction to ML, Napier University, Edinburgh, 2013

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the class is similar to the contents taught at other international universities. The students are encouraged to indentify elements of functional programming in the current practice of IT companies running at the local level.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final			
				methods	3	grade			
Course		Understanding functional		Midterm		60			
		programming elements, Class		assessment,					
		participation, Homework		Writing exam					
Applications		Quantity and quality of code in		Midterm		40			
		Lisp, Haskell and ML		assessment,					
				Practical exam					
10.4 Minimum standard of performance									

Understanding and code writing for the following concepts; Recursion, High Order Functions, Pattern Matching

Course responsible Assoc. prof. eng. Adrian Petru Groza

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4	Field of study	Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	33.				

2. Data about the subject

2.1	Subject name				Softv	Software Engineering						
2.2	Subject area				Com	Computer Science and Information Technology						
2.3	Course respor	nsibl	e/lec	turer		Prof.	Prof. dr eng. Eneia Nicolae Todoran – Eneia.Todoran@cs.utcluj.ro					
2.4	Teachers in ch	narge	e of a	applications		Assoc.prof. dr. Mitrea Paulina – Paulina.Mitrea@cs.utcluj.ro,						
						SI. d	dr. eng. Mitrea	Delia Delia.I	Mitrea	@cs.utcluj.ro		
2.5	Year of study	Ш	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject	DID/OB	
										category		

3. Estimated total time

Sem	Subject name	Lectur	Ap	plica	tion	Lectur	App	licat	ion	Individual		
	•	е		S		е		s		study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	L	Р			
5	Software Engineering	2	-	1	1	28	-	14	14	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	application	2
							S	
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	application	28
							S	
Indiv	ridual study							Hours
Man	ual, lecture material and notes, bibliog	raphy						25
Supp	olementary study in the library, online	and in th	e field	1				17
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, ess	says			17
Tutoring							5	
Exams and tests								10
Other activities							0	

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Object Oriented Programming, Programming Techniques
4.2	Competence	Competences acquired in the above disciplines

5. Requirements (where appropriate)

5.1	For the course	Blackboard, projector, computer
5.2	For the applications	Computers, specific software

6. Specific competences

C3 - Problems solving using specific Computer Science and Computer Engineering tools (2 credits)
C3.1 - Identifying classes of problems and solving methods that are specific to computing systems
C3.2 - Using interdisciplinary knowledge, solution patterns and tools, making experiments and interc

C3.2 - Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results

C3.3 - Applying solution patterns using specific engineering tools and mehods

C3.5 - Developing and implementing informatic solutions for concrete problems

C4 - Improving the performances of the hardware, software and communication systems (1 credit)

C4.2 - Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems

C4.4 - Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems

C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits)

C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator

C5.5 - Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

Cross competences N/A

Professional competences

7. Dissipling chicatives (so requite from the I/o// competences gained

7.	Discipline objectives (as results from	the key competences gained)
7.1	General objective	The overall objective of discipline consists in the study and application of systematic, disciplined and quantifiable approaches in software systems development
7.2	Specific objectives	 Study and application of software development processes Understanding the specific activities of software engineering Knowledge of software engineering models Knowledge of specific tools that can assist software engineers in the specification, design and validation process Knowledge of methods for software modeling and performance analysis Application of processes, methods and tools in small to medium-sized software projects

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction and overview of the course		
2	Software development paradigms: basic paradigms ('waterfall', prototyping, reusable components, formal methods), evolutionary paradigms (incremental development, spiral model, concurrent engineering)		
3	Modern processes: the unified process, agile methods and extreme programming		
4	Basic activities (specification, development, validation, evolution): concepts, principles, processes		
5	Conventional methods: introduction to structured analysis and design		
6	Developing requirements: domain analysis, types of requirements, techniques for gathering requirements, capturing requirements as use cases		
7	Modeling with classes: UML class diagrams, the process of developing class diagrams, the semantics of UML class diagrams, implementing class diagrams in Java		

8	Modeling interactions and behavior: UML interaction (sequence and communication), state and activity diagrams. Software performance modeling and analysis.	
9	Architecting and designing software: design principles (increase cohesion, reduce coupling, etc.), architectural patterns (Multi-Layer, Pipe-and-Filter, etc.)	
10	Testing and inspecting to ensure high quality: testing techniques (equivalence partitioning, path testing, etc.) and integration strategies (top-down, bottom-up, scenario-based), inspections	
11	Use case driven development: use case specifications, analysis, design and implementation to realize the use cases, testing the use cases	
12	Program specifications: pre and post assertions, well-founded induction, declarative prototyping	
13	Software engineering based on formal methods: basic concepts, formal specification languages, formal verification	
14	Model-based specification using Z: notation, schema calculus, methodology	

Bibliography

- 1. I. Sommerville. Software Engineering (6th, 7th, 8th, 9th editions). Addison Wesley (2001, 2004, 2006, 2010).
- 2. T. Lethbridge, R. Laganiere. *Object-Oriented Software Engineering: Practical Software Development using UML and Java* (2nd edition). McGraw-Hill, 2005. http://www.lloseng.com.
- 3. E. Currie. The essence of Z. Prentice Hall, 1999.
- 4. PRISM manual, 2014. http://www.prismmodelchecker.org/manual/
- 5. E.N. Todoran. *Inginerie software: studii in prototipizare si specificare formala*. Mediamira, Cluj-Napoca, 2006.

8.2.	Applications (Laboratory)	Teaching methods	Notes					
1	OCSF – an object client-server framework for reuse oriented development							
2	Simple Chat - an instant messaging system based on OCSF (1)							
3	Simple Chat - an instant messaging system based on OCSF (2)							
4	Using software modeling CASE tools (1): UML use case, class and							
	interaction diagrams							
5	Using software modeling CASE tools (2): UML state, component and							
	deployment diagrams							
6	Using CASE tools for performance software modeling and analysis:							
	PRISM, PEPA							
7	Test cases design with JUnit							
	project class attempts to simulate various aspects of the real world of							
	vare engineering. The students define the problem to be solved and the							
	e of the project under the supervision of the teaching assistant. Working							
	e is permitted, but they are encouraged to work in teams. The students							
	employ the paradigms and the software development methods that are							
	presented in the taught course. They are expected to deliver three iterations of							
	the project with predefined deadlines. For a traditional 'waterfall' project the							
	deadlines correspond to requirements specification, design, and the final							
	erable.							
	ography							

Bibliography

- 1. T. Lethbridge, R. Laganiere. *Object-Oriented Software Engineering: Practical Software Development using UML and Java* (2nd edition). McGraw-Hill, 2005. http://www.lloseng.com.
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Software Engineering is a well-established discipline in Computer Science and Information Technology. In this course, students acquire basic knowledge related to software development (paradigms, methods and tools) and learn to apply systematic and quantifiable approaches in the development of software systems. Course content has been developed based on interaction with specialists in Software Engineering from Romania, Europe and Canada and has been rated by Romanian government agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final			
				methods	3	grade			
Course		Problem solving skills		Written		75%			
				examination					
Applications		Software design and validation skills		Laboratory colloquium, Project assessment		25%			
10.4 Minimur	10.4 Minimum standard of performance								
Development	Development of a medium size software project using the skills taught in the Software Engineering course								

Course responsible Prof. dr. eng. Eneia Todoran

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	34.

2. Data about the subject

2.1	Subject name			Intro	Introduction to Artificial Intelligence						
2.2	Subject area				Com	Computer Science and Information Technology					
2.3	Course respor	nsible	e/lec	turer		Prof.	Prof. dr. eng. Letia Ioan Alfred – Ioan.Alfred.Letia@cs.utcluj.ro				
2.4	Teachers in charge of applications			Assoc. prof. dr. eng. Groza Adrian – Adrian.Groza@cs.utcluj.ro							
						Lect. dr. eng. Marginean Anca – Anca.Marginean@cs.utcluj.ro					.utcluj.ro
2.5	Year of study	Ш	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur	Apı	plica	tion	Lectur	App	licat	ion	Individual		
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	L	Р			
5	Introduction to Artificial Intelligence	2	•	2	-	28	•	28	•	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	application	2
							S	
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	application	28
							S	
Individual study								Hours
Manual, lecture material and notes, bibliography								18
Sup	olementary study in the library, online	and in th	ne field	k				5
Prep	paration for seminars/laboratory works	, homew	ork, re	eports, portfolios, es	says			10
Tutoring							6	
Exams and tests							9	
Other activities							0	

3.7	.7 Total hours of individual study				
3.8	Total hours per semester	104			
3.9	Number of credit points	4			

4. Pre-requisites (where appropriate)

4.1	Curriculum	.1	Log	Logic Programming, Functional Programming				
4.2	.2 Competence			mentary fundamentals of programming				

5. Requirements (where appropriate)

	or respensive (mise appro-	-11619/
5.1	For the course	Projector, Computer
5.2	For the applications	Computers with Linux, Specific Software

6. Specific competences

- Professional competences
- C3 Problems solving using specific Computer Science and Computer Engineering tools (1 credit)
- **C3.1** Identification of classes of problems and the methods to solve them characteristic of information systems
- **C3.2** Usage of interdisciplinary knowledge, patterns of solutions and tools, experimentation and interpretation of their results
- C3.3 Aplication of solution patterns using engineering tools and methods
- C3.4 Comparative evaluation, including experiments, of alternative solutions, to optimize performance
- C3.5 Development and implementation of computational solutions for concrete problems
- **C5 –** Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (1 credit)
- C5.1 Stating the criteria relevant to quality, security and system interaction with the environment and human operator
- C5.2 Usage of interdisciplinary knowledge for the adaptation of the informatic system to the requirements of the application domain
- C5.3 Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
- C6 Designing intelligent systems (2 credits)
- **C6.1** Describing the intelligent systems' components
- **C6.3** Applying the main methods and principles for specifying solutions for typical problems using intelligent systems
- C6.5 Developing and implementing professional projects for intelligent systems

Cross competences N/A

7. Discipline objectives (as results from the key competences gained)

	corpinio objectives (de recuite ireini	and may dompositive gamea,
7.1	General objective	Knowledge of representation and reasoning of fundamental problems of artificial intelligence
7.2	Specific objectives	Fundamental search methods, Usage of first-order logic and description logics, Basic planning representation and solving methods

8. Contents

8.1. L	ecture (syllabus)	Teaching	Notes
		methods	
1	Introduction.	Slides,	
2	Intelligent Agents: behavior, environments, structure.	Algorithms,	
3	Solving Problems by Searching: uninformed, searching with partial	Quality of	
	information.	solutions,	
4	Informed Search Methods and Exploration: heuristics, local search	Exceptions,	
	algorithms and optimization problems, local search in continuous spaces.	Limits in the	
5	Constraint Satisfaction Problems: backtracking, local search.	representation of	
6	Adversarial Search: alpha-beta pruning, imperfect, real-time decisions,	the real world,	
	games that include an element of chance.		
7	Logical Agents: knowledge-based agents, propositional logic, effective		
	propositional inference.		
8	First-Order Logic.		
9	Inference in First-Order Logic: forward, backward chaining, resolution.		
10	Knowledge Representation.		
11	Description logics: description languages, terminologies, world		
	description, inferences, reasoning algorithms, language extensions		
12	Planning: partial-order planning, planning graphs.		
13	Planning and Acting in the Real World: schedules and resources,		

	hierarchical network planning, conditional planning, execution monitoring					
	and re-planning, continuous planning.					
14	Course Overview.					
Biblio	graphy					
1	 Artificial Intelligence: A Modern Approach: Russell, Norvig, Prentice Hall, Basic Description Logics: Baader, Nutt, CUP, 2003 	2002				
8.2.	Applications (Laboratory)	Teaching methods	Notes			
1	Introduction to the documentation for the assignment					
2	Studying the documentation for the assignment					
3	Studying the design of the tool					
4	Practicing the exercises provided in the archive					
5	Understanding the main parts of the software					
6	Running the system by tracing at high level	Platform,				
7	Mastering the running of the system and the examples provided	Documentation,				
8	Conceptual design of new examples	Testing,				
9	Code for the new examples	Examples,				
10	Testing and debugging the new cases	New examples				
11	Measuring the performance of the system					
12	Documenting the new scenarios					
13						
14	Final evaluation of the exercises developed					
Biblio	ography	·				
1	. Various Artificial Intelligence Tools from the WWW					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The textbook is one of the most known and used one in the world of the best universities, continuously assessed by the university and research community in the world regarding its influence and use in the software oriented companies.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final
				methods	3	grade
Course		Problems and theoretical concepts		Written exam		80%
Applications		Usage of specific tools on the examples developed and tested by the students		Evaluation in the laboratory		20%
10.4 Minimum standard of performance						
Representation of knowledge and its use in solving specific problems using specific tools						

Course responsible Prof. dr. eng. Ioan Alfred Letia

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	35.

2. Data about the subject

2.1	Subject name			Economic legislation								
2.2	.2 Subject area			Com	Computer Science and Information Technology							
2.3	2.3 Course responsible/lecturer			Lect.	Lect. dr. jur. Roxana Cordos							
2.4	2.4 Teachers in charge of applications			-								
2.5	Year of study	Ш	2.6	Semester	5	2.7	Assessment	Colloquium	2.8	Subject	DC/0	OB
								-		category		

3. Estimated total time

Sem	Subject name	Lectur	Ар	plica	tion	Lectur	App	licat	tion	Individual		
		е	e s		е	S			study	TOTAL	Credit	
		[hours / week.]		[hours / semester]		ster]						
			S	L	Р		S	Γ	Р			
5	Economic legislation	2	-	-	-	28	-	-	-	24	52	2

3.1	Number of hours per week	2	3.2	of which, course	2	3.3	application	-
							S	
3.4	Total hours in the teaching plan	28	3.5	of which, course	28	3.6	application	-
							S	
Individual study								Hours
Manual, lecture material and notes, bibliography								18
Supplementary study in the library, online and in the field								2
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								
Tutoring							2	
Exams and tests							2	
Other activities								

3.7	Total hours of individual study	24
3.8	Total hours per semester	52
3.9	Number of credit points	2

4. Pre-requisites (where appropriate)

4.1	Curriculum	Not the case
4.2	Competence	Not the case

5. Requirements (where appropriate)

5.1	For the course	Not the case
5.2	For the applications	Not the case

6. Specific competences

Competen	sional	N/A	
	Profession		

CT3 – Demonstrating the spirit of initiative and action for updating professional, economical and organizational culture knowledge (2 credits)

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Applying the general and specific knowledge of technical culture in solving the business issues in this field
7.2	Specific objectives	Knowing the basic legisltion in the field and finding solution for different types of problems.

8. Contents

8.1.	Lecture (syllabus)	Teaching	Notes
		methods	
1	General notions of economic legislation.		
2	The merchants		
3	Commerce acts		
4	Commercial contracts –general notions		
5	Classification of contracts		
6	The contract of sale	Modern	
7	The contract of transportation	teaching	
8	The contract of storage, mandate, renting	methods	
9	The contract of leasing		
10	General rules applied to commercial societies		
11	The constitutive act of a firm		
12	Society on shares		
13	The society with limited responsibility		
14	The society in collective name, with simple sleeping partners and on shares		
	sleeping partners.		
I DOLL IS			

Bibliography

- 1. S.Angheni, M.Volonciu, C.Stoica, M.Lostun, Drept comercial, Ed. Oscar Print, Bucuresti, 2000
- 2. I.L.Georgescu, I.Bacanu, Drept comercial român, vol.II, Ed.Lumina Lex, Bucuresti, 2000
- 3. B. Stefanescu, O.Capatâna, Dictionar juridic de comert exterior, Bucuresti, 1986.
- 4. S.Carpenaru, Drept comercial, Ed.All, Bucuresti, 2007
- 5. Bodu S., Drept commercial completat cu notiuni fundamentale de drept civil- curs universitar, 2005

8.2.	Applications (Seminars, Laboratory	, Projects)	Teaching methods	Notes
1	-			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The students will have the possibility to learn how to put into practice a business idea in the studied domain.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course		Colloquium		Written test		100%	
Applications							
10.4 Minimum standard of performance							
Grade 5							

Course responsible Lect. dr. jur. Roxana Cordos

6. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	36.

7. Data about the subject

2.1	Subject name				Grap	Graphical Processing Systems					
2.2	2 Subject area			Com	Computer Science and Information Technology						
2.3	.3 Course responsible/lecturer				Prof.	Prof. dr. eng. Gorgan Dorian – dorian.gorgan@cs.utcluj.ro					
2.4	Teachers in charge of applications				S.I. dr. eng. Melenti Cornelia, S.I. dr. eng. Bacu Victor,						
{cornelia.melenti, victor.bacu}@cs.utcluj.ro											
2.5	Year of study	Ш	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

8. Estimated total time

Sem	Subject name		Ар	plica	tion		App	licat	ion	Individual		المالة
-		е		S		е		S		study	TOTAL	Credit
		[hour	s/v	week	.]	[h	ours	:/se	mes	ster]		
			S	L	Р		S	L	Р			
5	Graphical Processing Systems	2	-	2	-	28	-	28	-	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	application	2
							S	
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	application	28
	- 1						S	
Indiv	ridual study							Hours
Man	ual, lecture material and notes, bibliog	graphy						20
Supp	olementary study in the library, online	and in th	e field	1				6
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, ess	says			10
Tuto	ring							3
Exar	ns and tests							9
Othe	er activities							0

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

9. Pre-requisites (where appropriate)

4.1	Curriculum	Computer programming (C language)
		Elements of Computer Assisted Graphics
4.2	Competence	Applications development in C programming language, Graphical
		systems architecture, The graphical processing pipeline

10. Requirements (where appropriate)

5.1	For the course	Projector, computer			
5.2	For the applications	Laboratory attendance is mandatory			
		Study of laboratory materials from the server			

19

6. Specific competences

C4 - Improving the performances of the hardware, software and communication systems (4 credits)
C4.1 - Identifying and describing the defining elements of the performances of the hardware, software and communication systems
C4.2 - Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
C4.3 - Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems
C4.4 - Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
C4.5 - Developing professional solutions for hardware, software and communication systems based on performance optimization

N/A

7. Discipline objectives (as results from the key competences gained)

1.0	iscipilite objectives (as results from	the key competences gamed)
7.1	General objective	Study and experiment with the 3D photorealistic algorithms. Development of 2D and 3D graphics applications.
		Bovolopinoni of 2B and oB grapinos applications.
7.2	Specific objectives	 Creation of the graphic model of a 3D scene of objects Implementation and usage of the fundamental 3D graphics algorithms that can be found in the core of a graphic system Development of graphic applications in a high-level programming language (C, C++) based on graphics libraries (ex. OpenGL) Implementation of the main phases of the graphics transformation pipeline, in order to transform a 3D scene into an image.

8 Contents

	ontents		Tax :
8.1. l	Lecture (syllabus)	Teaching methods	Notes
1	Computational graphics	New multimedia	
2	Hidden line and surface removal algorithms. Part 1	teaching	
3	Hidden line and surface removal algorithms. Part 2	approaches will	
4	3D objects modeling	be used in	During the
5	Particles based models	classes.	semester and
6	Polygonal objects rendering. Part 1		before each
7	Polygonal objects rendering. Part 2	The course is	exam there
8	Illumination models. Local reflection model. Phong model	interactive and	are a few
9	Shadow computation	includes	preparation
10	Texture mapping. Part1	demonstrations	hours
11	Texture mapping. Part2	that exemplify	planned.
12	Global reflection models. Ray-tracing algorithm	graphical	
13	Global reflection models. Radiosity algorithm	methods and	
14	Graphical animation	algorithms.	
D.I. II.			

Bibliography

- 5. Watt A., "3D Computer Graphics". Addison-Wesley, 1998.
- Watt A., Policarpo F.: "3D Games. Real-time Rendering and Software Technology". Addison-Wesley, 2001.
- 7. Akenine-Moller T., Haines E., "Real-Time Rendering". A.K. Peters 2nd edition, 2002.
- 8. Foley J.D., van Dam, A., Feiner, S.K., Hughes, J.F., "Computer Graphics. Principles and Practice". Addison-Wesley Pblishing Comp., 1992.
- 9. Gorgan D., Rusu, D., "Elemente de Grafică pe Calculator". Cluj-Napoca, 1996.

In virtual library

- 1. Curse and practical works, http://cgis.utcluj.ro
- 2. Course resources, http://cgis.utclui.ro/didactic

2. Course resources, http://cgis.utcluj.ro/didactic		
8.2. Applications (Laboratory)	Teaching	Notes

		methods	
1	Introduction. Administrative	Documentation	
2	OpenGL application framework	and examples	
3	Graphics primitives in OpenGL	will be available	Each student
4	Graphics transformations in OpenGL	to the students,	will have to
5	Data model and file formats	prior to the	develop a
6	Projections and clipping planes in OpenGL	laboratory	specific
7	Lighting model in OpenGL	classes, on a	project based
8	Texture mappings in OpenGL	dedicated	on the
9	Shadow computation in OpenGL applications	server. The	knowledge
10	Graphical User Interface in OpenGL Applications - Part 1	students will	acquired at
11	Graphical User Interface in OpenGL Applications - Part 2	work	the
12	Ray tracing algorithm	independently but will also be	laboratory
13	Bump mapping	assisted by the	hours.
14	Assessment	teacher.	
Bibli	ography		

In virtual library

1. Curse and practical works, http://cgis.utcluj.ro

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline is integrated into the Computers and Information Technology domain. The content is classic, yet modern, and introduces to students the fundamentals of 3D graphic systems and algorithms. The content of this discipline has been aligned with the information presented in similar disciplines from other major universities and companies from Romania, Europe and USA and has been evaluated by the authorized Romanian governmental agencies (CNEAA and ARACIS).

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10. 3	Weight in the final grade
Course		The written exam tests the understanding of the information presented in classes and the ability to apply this knowledge. The activity in class evaluates the active involvement of the students in the teaching process and their participation to the discussions, debates and other class activities during the entire semester.		Evaluation is performed through written exam (E).		60% (E)
Applications		Laboratory assessment evaluates the practical abilities obtained by the students. Through homework assignments the students have the opportunity to develop their skill in applying the notions, concepts and methods presented in class.		Evaluation is performed through written exam and homework assessment.		40%

Condiție de promovare: N≥5

Course responsible Prof.dr.eng. Dorian Gorgan