1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	23.

2. Data about the subject

2.1	2.1 Subject name				Syste	Systems Theory						
2.2	Subject area					Com	Computer Science and Information Technology					
2.3	Course respon	nsibl	e/lec	turer		Asso	Assoc. prof. dr. eng. Paula Raica – Paula.Raica@aut.utcluj.ro					
2.4	2.4 Teachers in charge of applications			Sl.dr	Sl.dr.ing. Ionut Muntean - Ionut.Muntean@aut.utcluj.ro							
	Sl.dr.ing. Lucian Busoniu – Lucian.Busoniu@aut.utcluj.ro,				ıj.ro,							
						SI.dr	ing. Cosmin	Marcu - Cos	min.M	larcu@aut.utcluj	.ro	
2.5	Year of study	Ш	2.6	Semester	4	2.7	Assessment	exam	2.8	Subject	DID/OB	
										category		

3. Estimated total time

Sem	Subject name	Lectur	Αpı	plica	tion	Lectur	Apr	licat	ion	Individual		
		е		S		е		S			TOTAL	Credit
		[hours / week.]		[h	ours	/ se	mes	ster]				
			S	L	Р		S	L	Р			
4	Systems Theory	2	-	2	-	28	-	28	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study						Hours	
Manual, lecture material and notes, bibliography							20
Supplementary study in the library, online and in the field							5
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						20	
Tutoring							
Exams and tests							3
Other activities	•				•	•	

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Mathematical Analysis_II (Integral calculus and differential equations,
		Linear algebra
4.2	Competence	Differential equations, complex numbers, Laplace transform, linear
		algebra

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Reading and understanding of the lecture notes.

6. Specific competences

	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (4 credits) C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
Cross	I N/A

1. Discipline abjectives (as results from the key competences gained)						
7.1	General objective	The general objective of the course is to introduce the fundamental principles of linear system modeling, analysis and feedback control and to evaluate feedback control systems with desired behavior.				
7.2	Specific objectives	The specific objectives are to acquire the knowledge and techniques related to: - mathematical system modeling (differential equations, input-output representation as transfer functions, block diagrams) for simple applications - linear system analysis (assessment of stability and performance properties of linear systems) in time and frequency domains - design of feedback controllers such as PID, lead and lag compensators for linear systems using s-domain techniques - linear sampled-data system representation and analysis				

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction to system theory and control engineering	mounous	
2	Mathematical models of systems. Transfer functions and system response	Lecture, visual presentations,	N/A
3	Block diagram models. Block diagram reduction. MIMO systems	demonstrations	
4	Analysis of linear continuous systems. 1st and 2nd order systems. Steady-state error.		
5	Higher order systems. Stability of linear continuous systems		
6	System analysis using root locus		
7	Frequency response. Bode diagrams.		
8	Frequency response. Stability in the frequency domain. Applications		
9	PID – the basic technique for feedback control;		
10	Controller design using root locus. Lead-lag compensators		
11	Controller design using root locus. Applications		
12	Sampled-data systems		
13	Digital control systems		
14	Sampled data and digital control systems. Applications		

Bibliography

- R. C. Dorf, R. Bishop, "Modern Control Systems", Addison-Wesley, 2004;
 K. Ogata, "Modern Control Engineering", Prentice Hall, 1990.
 K. Dutton, S. Thompson, B. Barraclough, "The Art of Control Engineering", Addison-Wesley, 1997
- 4. William S. Levine (editor), "The Control Handbook", CRC Press and IEEE Press, 1996
- 5. Lecture notes available on the course webpage: http://rrg.utcluj.ro/ts

8.2.	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1	Introduction to Matlab. Simulation of dynamical systems	Class	4 hours
2	Linear approximation of differential equations. Transfer functions. System	discussion,	4 hours
	response.	Supervised	
3	Block diagram models. 1st and 2nd order system analysis. Steady-state	exercise solving	4 hours

	error	using Matlab				
4	System stability. Root locus	Miniprojects –	4 hours			
5	Frequency response. Bode diagrams	individul student	4 hours			
6	PID. Lead-lag compensation	reports	4 hours			
7	Sampled-data systems		4 hours			
Biblio	Bibliography					

- 1. Paula Raica, "Control Engineering. Exercises", Editura Mediamira, 2001
- 2. Lecture notes available on the course webpage: http://rrg.utcluj.ro/ts

The course content combines theoretical knowledge with applications and focuses on the formulation and solution of specific problems that may occur in various engineering fields. Application of the control theory concepts are specific to most of the engineering disciplines. The course level is introductory and the intent is to motivate and prepare students for further study in related areas and to conduct projects in real-life applications.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10. 3	Weight in the final grade			
Course		Ability to solve exercises related to linear system modeling and analysis		Midterm exam		40%			
		Ability to solve exercises related to system design and analysis of sampled-data systems		Final exam		60%			
Applications		Answer simple questions from the topic of the lab applications		Lab tests (optional)		20%			
		Submitting and defending a miniproject on a given subject		Individual student report (optional)		20%			
10.4 Minimu	10.4 Minimum standard of performance								
Solution of simple exercises applying the knowledge and techniques presented in the course									

Course responsible Conf.dr.ing. Paula Raica

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	24.

2. Data about the subject

2.1	2.1 Subject name				Com	Computer Architecture						
2.2	.2 Subject area				Com	Computer Science and Information Technology						
2.3	Course respor	nsibl	e/lec	turer		S.I.d	S.l.dr.eng. Mihai Negru – Mihai.Negru@cs.utcluj.ro					
2.4	Teachers in ch	narg	e of a	applications		Conf	Conf.dr. eng. Florin Oniga, S.I.dr.eng. Mihai Negru, {					
						Flori	n.Oniga, Miha	i.Negru }@cs	.utclu	j.ro		
2.5	Year of study	Ш	2.6	Semester	4	2.7	Assessment	exam	2.8	Subject	DID/OB	
	_									category		

3. Estimated total time

Sem	Subject name	Lectur	Αpı	plica	tion	Lectur	Apr	licat	tion	Individual		
		е		S		е		S			TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	Г	Р			
4	Computer Architecture	2	-	2	-	28	-	28	-	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours
Manual, lecture material and notes, bibliog	graphy						28
Supplementary study in the library, online and in the field							
Preparation for seminars/laboratory works	, homew	ork, re	eports, portfolios, es	says			28
Tutoring							0
Exams and tests							4
Other activities							0
							-

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	 Logic design Digital system design
4.2 Competence		Ability to design digital circuits and to implement them in VHDL

5. Requirements (where appropriate)

5.1	For the course	blackboard, video projector, laptop
5.2	For the applications	desktop/laptop computer, Xilinx ISE / VIVADO, FPGA development
		boards

6. Specific competences

Professional competences	C2 – Designing hardware, software and communication components (5 credits) C2.1 – Describing the structure and functioning of computational, communication and software components and systems C2.2 – Explaining the role, interaction and functioning of hardware, software and communication components C2.3 – Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies C2.4 – Evaluating the functional and non-functional characteristics of the computing systems using specific metrics
Se	C2.5 – Implementing hardware, software and communication systems N/A
Cross competences	

	. Blodpine objectives (as results from the Key competences games)						
7.1	General objective	Knowing and understanding the concepts of organization and functioning for central processing units, memories, input/output, and using these concepts for design.					
7.2	Specific objectives	 Applying methods for representation and design at system level for digital circuits Instruction Set Architecture (ISA) specification Writing simple programs in assembly languages and machine code Specification, design, implementation, and testing of Central Processing Units (CPU) – micro architecture – data path – command units Understanding memory organization and I/O operations Understanding modern trends in computer architectures 					

8. Contents

8.1. L	Lecture (syllabus)	Teaching	Notes
		methods	
1	Introduction		
2	High-Level Synthesis		
3	Instruction Set Architecture (ISA)		
4	CPU Design - Single Cycle CPU	Oral presentation backed up by multimedia	
5	Computer Arithmetic and Simple Arithmetic Logic Units		
6	CPU Design - Multi Cycle CPU Data path		
7	CPU Design - Multi Cycle CPU Control	equipment,	
8	CPU Design – Pipelined CPU	interactive	
9	Advanced Pipelining – Static and Dynamic Scheduling of the Execution	communication,	
10	Branch Prediction	blackboard	
11	Superscalar Architectures	problem solving	
12	Memory		
13	I/O and Interconnection Structures		
14	Problem solving		
Riblic	paraphy		

Bibliography

- 1. D. A. Patterson, J. L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface",5th edition, ed. Morgan-Kaufmann, 2013.
- 2. D. A. Patterson and J. L. Hennessy, "Computer Organization and Design: A Quantitative Approach",5th edition, ed. Morgan-Kaufmann, 2011.
- 3. Vincent P. Heuring, et al., "Computer Systems Design and Architecture", Addison-Wesley, USA, 1997.
- 4. A. Tanenbaum, "Structured Computer Organization", Prentice Hall, USA, 1999.
- MIPS32 Architecture for Programmers, Volume I: "Introduction to the MIPS 32™ Architecture". MIPS32 Architecture for Programmers, Volume II: "The MIPS 32™ Instruction Set".

Online bibliography

M. Negru, F. Oniga, S. Nedevschi, Lecture slides http://users.utcluj.ro/~negrum

8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Introduction in the Xilinx ISE environment and the FPGA development		
	board	Blackboard	
2	Design and Implementation of Combinational CPU Components	quick overview	
3	Design and Implementation of Sequential CPU Components	of key issues,	
4	Design of a Single Cycle CPU 1 (MIPS)	exercises,	
5	Design of a Single Cycle CPU 2 (MIPS)	experimenting	
6	Design of a Single Cycle CPU 3 (MIPS)	with FPGA	
7	Design of a Single Cycle CPU 4 (MIPS)	development	
8	Midterm practical evaluation on the FPGA board	boards with	
9	Pipelined CPU Design	specialized IDEs	
10	Pipelined CPU Design	for circuit design	
11	Pipelined CPU Design	and	
12	Pipelined CPU interfacing	implementation	
13	Practical evaluation of the pipelined CPU on the FPGA board	(Xilinx ISE)	
14	Final Tests and Evaluation		
	ography		

Online bibliography

1. M. Negru, F. Oniga, S. Nedevschi, Laboratory guide http://users.utcluj.ro/~negrum

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Computer Architecture is one of the fundamental subjects of the Computer Science and Information Technology field. It combines fundamental and practical aspects used for digital circuits design and implementation. The content of this subject is harmonized with the specific curricula of other national and international universities, and is evaluated by the Romanian government agencies (CNEAA and ARACIS). The practical aspects involve getting familiar with and using development products and tools provided by companies from Romania, Europe, and USA (ex. Xilinx, Digilent).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2	Assessment methods	10. 3	Weight in the final grade
Course	Testing the theoretical knowledge, the ability of problem solving, presence and activity		Written exam		50 %
Applications	Practical ability to solve and implement specific problems related to processor design, presence and activity		Lab exam, periodical assessment of results		50 %

10.4 Minimum standard of performance

Knowing the fundamental theory of the subject, the ability to design and implement a processor with a reduced set of instructions

Course responsible S.I.dr. ing. Mihai Negru

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	25.

2. Data about the subject

2.1	Subject name				Fund	Fundamental Algorithms						
2.2	2.2 Subject area			Com	Computer Science and Information Technology							
2.3	.3 Course responsible/lecturer					Prof.	Prof. dr. eng. Rodica Potolea – Rodica.Potolea@cs.utcluj.ro					
2.4	.4 Teachers in charge of applications					Assoc. prof. dr. eng. Tudor Mureşan –						
						Tudor.Muresan@cs.utcluj.ro						
	Sl. dr. eng. Camelia Lemnaru – Camelia.Lemnaru@cs.utcluj.ro						s.utcluj.ro					
2.5	Year of study	II	2.6	Semester	4	2.7	Assessment	exam	2.8	Subject	DID/OB	
										category		

3. Estimated total time

Sem	Subject name	Lectur	Ар	plica	tion	Lectur	App	licat	ion	Individual		
-		е		S		е		S		study	TOTAL	Credit
		[hours / week.]		[hours / semeste			ster]					
			S	L	Р		S	L	Р			
4	Fundamental Algorithms	2	1	2	-	28	14	28	-	60	130	5

3.1	Number of hours per week	5	3.2	of which, course	2	3.3	application	3
							S	
3.4	Total hours in the teaching plan	70	3.5	of which, course	28	3.6	application	42
							S	
Individual study								Hours
Man	Manual, lecture material and notes, bibliography							
Supp	olementary study in the library, online	and in th	e field	k				16
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, ess	says			16
Tuto	Tutoring							8
Exar	Exams and tests							9
Other activities								

3.7	Total hours of individual study	60
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

		matoj
4.1	Curriculum	Data Structures, Programming
4.2	Competence	Learning to develop and test programs

5. Requirements (where appropriate)

5.1	For the course	Whiteboard, projector, computer
5.2	For the applications	Networks, C ++

6. Specific competences

ofe D	C3. Problems solving using specific Computer Science and Computer Engineering tools (5 credit points) C3.1 Identifying classes of problems and solving methods that are specific to computing systems C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 Applying solution patterns using specific engineering tools and mehods C3.4 Evaluating, comparatively and experimentally, the available alternative solutions for performance optimization C3.5 Developing and implementing informatic solutions for concrete problems
Cross	N/A

7.1	General objective	Acquiring modern study of algorithms: design and analysis
7.2	Specific objectives	 Learning with the efficient resolution Learning the methods for evaluating the effectiveness Acquiring main polynomial algorithms Acquiring calculation complexity Specify algorithms to shift the focus of control structures Learning facile implementation of strict compliance with the pseudocode Effective implementation of key polynomial algorithms Practical assessment algorithms efficiency: space and processing time

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Mathematical Foundations: Asymptotical notation, Recurrence	Multimedia tools	
2	Complexity Classes		
3	Sorting and Order Statistics		
4	Sorting and Order Statistics (continued)		
5	Advanced Data Structures: Hash Tables, Trees		
6	Advanced Data Structures: Heaps, Disjoint Sets		
7	Design and Analysis Advanced Techniques: Dynamic Programming		
8	Design and Analysis Advanced Techniques: Greedy Algorithms		
9	Design and Analysis Advanced Techniques: Damping Analyze		
10	Graphs: Search in a Graph, Minimal Spanning Tree		
11	Graphs: Shortest path		
12	Graphs: Max Flow		
13	Graphs: Bipartite Graphs		
14	Learn the basic Complexity sets and representative problems		
D:L::-	and a late		

Bibliography
1. T. Cormen, C. Rleiserson, R. Rivest, C. Stein, Introduction to Algorithms, Second Edition, The MIT Press, 2001

8.2. /	Applications (Seminars, Laboratory)	Teaching methods	Notes
1	Efficient implementation and comparison of sorting algorithms		
2	Efficient implementation and comparison of sorting algorithms (continued)		
3	Efficient implementation and comparison of lists algorithms		
4	Efficient implementation and comparison of lists algorithms (continued)		
5	Efficient implementation and comparison of trees algorithms	Assistance and	
6	Efficient implementation and comparison of trees algorithms (continued)	verification	
7	Implementation of augmented data structures	practice	
8	Implementation of augmented data structures (continued)		
9	Efficient implementation of graphs algorithms		
10	Efficient implementation of graphs algorithms (continued)		
11	Efficient implementation of graphs algorithms (continued)		

12	Efficient implementation of graphs algorithms (continued)					
13	Approximation algorithms					
14	Final Evaluation					
Biblio	Bibliography					
1. T.	1. T. Cormen, C. Rleiserson, R. Rivest, C. Stein, Introduction to Algorithms, Second Edition, The MIT Press,					
2001						

Discipline is fundamental in the field of Computer and Information Technology, its content is beyond dispute, familiarizing students with the principles of design and analysis of algorithms. Course content is aligned all departments of computer science in the world and was rated by Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final	
				methods	3	grade	
Course		Theoretical problem solving		Written exam		70%	
		skills					
Applications		Problem solving skills practice		Written exam		30%	
10.4 Minimum standard of performance							
final grade ≥5							

Course responsible Prof.dr.eng. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	26.

2. Data about the subject

_			, -								
2.1	Subject name					Fundamental Programming Techniques					
2.2	Subject area					Com	Computer Science and Information Technology				
2.3	Course respon	nsible	e/lec	turer		Prof. dr. eng. Ioan Salomie - Ioan.Salomie@cs.utcluj.ro					
2.4	Teachers in cl	harge	e of a	applications		Conf. dr.eng. Viorica Chifu – Viorica.Chifu@cs.utcluj.ro					
					S.I. dr. eng. Tudor Cioară – Tudor.Cioara@cs.utcluj.ro						
						S.I. c	dr. eng. lonut i	Anghel – Ionu	ıt.Ang	hel@cs.utcluj.ro	
	S.I. dr. eng. Cristina.Pop – Cristina.Pop@cs.utcluj.ro										
2.5	Year of study	Ш	2.6	Semester	4	2.7	Assessment	exam	2.8	Subject	DF/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur	App	olica	tion	Lectur	App	licat	ion	Individual		
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	L	Р			
4	Fundamental Programming Techniques	2	-	2	-	28	•	28	-	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	28	3.3	applications	28
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							
Manual, lecture material and notes, bibliog	graphy						18
Supplementary study in the library, online and in the field							
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							24
Tutoring							
Exams and tests							
Other activities							

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Object Oriented Programming Fundamentals
4.2	Competence	Knowledge of Object Oriented Programming

5. Requirements (where appropriate)

5.1	For the course	Whiteboard, projector, computer
5.2	For the applications	Computers, specific software

6. Specific competences

C4 - Improving the performances of the hardware, software and communication systems
C4.1 - Identifying and describing the defining elements of the performances of the hardware, software and communication systems
C4.2 - Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
C4.3 - Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems
C4.4 - Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
C4.5 - Developing professional solutions for hardware, software and communication systems based on performance optimization

N/A

7. Discipline objectives (as results from the key competences gained)

1.01	1. Discipline objectives (as results from the key competences gained)						
7.1	General objective	Knowledge of and application of object-oriented programming techniques in					
		eveloping applications sofware					
7.2	Specific objectives	- Be able to use programming techniques for designing classes and interfaces, including contracts and invariant					
		- Be able to use programming techniques for code reuse using inheritance and polymorphism					
		- Be able to use generic programming techniques for processing collections					
		- Be able to use programming techniques and event-based reflection					
		- Be able to use programming techniques and concurrent multi-threading					
		- Be able to use design patterns and frameworks for design reuse solutions					
		Be able to use programming techniques for performance and maintenance software					

8. Contents

8.1. L	ecture (syllabus)	Teaching	Notes
		methods	
1	Class level design and implementation techniques	Using modern	
2	Programming techniques with classes and interfaces	multimedia	
3	Programming techniques using inheritance and polymorphism	teaching	
4	Programming techniques using contracts and invariants	methods and	
5	Generic programming techniques	direct access to	
6	Reflection techniques	internet	
7	Event-driven techniques	Students are	
8	Collection programming techniques	invited to	
9	Concurrent and multithreading techniques	collaborate in	
10	Flexibility and reuse through design patterns	research	
11	Main design patterns of type creational, structural and behavioral	projects	
12	Flexibility and reuse through frameworks	Tutorials and	
13	Techniques for efficiency and performance	personal	
14	Techniques for clarity and maintenance	assistance	
		hours the	
		semester and	
		before the exam	

Bibliography

- 1. Ioan Salomie Tehnici Orientate Object, Editura Albastra, Microinformatica, 1995
- 2. Eric Gamma, Helm, Johnson, Vlissides Design Patterns, Addison Wesley, 1995 (translated into Romanian by Teora Publ. as "Sabloane de Proiectare")
- 3. Joshua Bloch Effective Java, 2/e Addison Wesley, 2008
- 4. Xiaoping Jia Object Oriented Software Development using Java, Addison Wesley, 2002
- 5. Ioan Salomie, Note de Curs, http://www.coned.utcluj.ro/~salomie/TP
- 8.2. Applications (Seminars, Laboratory, Projects) Teaching methods Notes

1-2	Programming with classes and objects using Java, C# and C++ (2 lab sessions)	Short	
3-4	Programming with inheritance and polymorphism using Java, C# and C++ (2 lab sessions)	presentation of the themes	
5-6	Programming with Java Collection Framework (2 lab sessions)	laboratory, discussions on	
7-8	Error handling in Java programming (2 lab sessions)		
9- 10	Multi-threading programming in Java (2 lab sessions)	themes, themes implementing	
11- 12	Mini-project (involving design patterns and frameworks) (2 lab sessions)	computer, personal	
13- 14	Laboratory Test and mini-project presentations	computer miniproject	
Biblio	ography	<u>. </u>	

- 1. Steve McConnell Code Complete, 2/e, Microsoft Press, 2004
- 2. http://java.sun.com/docs/books/tutorial

It's a discipline domain "Computer and Information Technology". She instructs students in the application of object-oriented programming techniques in designing and implementing applications sofware. Course content was determined by analyzing equivalent disciplines from other universities and based on the requirements of IT employers in Romania. Course content also was assessed by Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final
				methods	3	grade
Course		-Ability to use of object-oriented programming techniques in designing and implementing applications sofware -Ability to use of design patterns and frameworks sites for reuse design solutions - Ability to solve problems using object oriented programming techniques		written exam		55%
Applications		Problem solving skills using object oriented programming techniques Presence Activity		written exam		45%

10.4 Minimum standard of performance

- Can use object oriented programming techniques in designing and implementing software applications
- Obtaining final grade 5.

Course responsible Prof.dr.eng. Ioan Salomie

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	27.

2. Data about the subject

	z. Bata about the cabject											
2.1	Subject name					Oper	Operating Systems					
2.2	Subject area	а				Com	Computer Science and Information Technology					
2.3	Course responsible/lecturer					Lect.	Lect. dr. eng. Adrian Coleşa – adrian.colesa@cs.utcluj.ro					
2.4	Teachers in	cha	rge of	applications		Lect.	Lect. dr. eng. Adrian Coleşa – adrian.colesa@cs.utcluj.ro					
						Eng.	Gheorghe Hajn	nasan – <mark>gl</mark>	hajma	san@bitdefender.	com	
						Eng.	Andrei Lutas -	vlutas@b	itdefe	nder.com		
						Eng.	Radu Ciocas -	rciocas@	bitdefe	ender.com		
2.5	Year of	Ш	2.6	Semester	4	2.7	Assessment	exam	2.8	Subject	DID/OB	
	study									category		

3. Estimated total time

Sem	Subject name	Lecture	App	licat	ions	Lecture	App	licati	ons	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]								
			S	┙	Р		S	Г	Р			
4	Operating Systems	2	-	2	-	28	-	28	-	74	130	5

2
28
Hours
30
10
28
2
4
0

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer Programming, Data Structures and Algorithms
4.2	Competence	C programming

5. Requirements (where appropriate)

5.1	For the course	Students must have minimum 9 classes attended to be allowed to take
		the exam
5.2	For the applications	Students must have minimum 11 classes attended to be allowed to take
		the exam

6. Specific competences

C3: Problems solving using specific Computer Science and Computer Engineering tools (3 credits) **C3.1**: Identifying classes of problems and solving methods that are specific to computing systems C3.2: Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3: Applying solution patterns using specific engineering tools and methods Professional competences C3.4: Evaluating, comparatively and experimentally, the available alternative solutions for performance optimization C3.5: Developing and implementing informatic solutions for concrete problems C4: Improving the performances of the hardware, software and communication systems (2 credits) C4.1: Identifying and describing the defining elements of the performances of the hardware, software and communication systems C4.2: Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems C4.3: Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems C4.4: Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems C4.5: Developing professional solutions for hardware, software and communication systems based on performance optimization N/A competences Cross

7. Discipline objectives (as results from the key competences gained)

1.0	1. Die opinie objectives (as results from the Key competences games)						
7.1	General objective	Have a clear understanding of what an OS is, its role and general functionality and be able to use most of the OS system calls.					
7.2	Specific objectives	Have knowledge and understand the general structure and functionality of an OS. Understand the specific functionality of the most important OS components, like shell, process manager, file system, memory manager, security manager. Understand the functionality of main synchronization mechanisms and be able to use them to solve real synchronization problems. Be able to write C programs to use an OS (Linux and Windows) system calls.					

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Introduction and basic concepts. OS's definition, role, evolution,	(1) lecture	
	components, main concepts (file, process, system calls). Basic hardware	presentation based	
	aspects: CPU, user and kernel mode, memory layers, I/O devices. Basic	on beamer	
	OS structure.	presentation;	
2	The Shell (Command Interpreter) . Definition, role, functionality, simple	(2) interactions with	
	and complex commands. Standard input and output redirection.	students: ask their	
3	File systems (1). User Perspective. File and directory concept from the	opinion relative to the	
	user point of view (definition, role, characteristics, operations).	presented subject;	
4	File systems (2). Windows and Linux File Systems. Permission rights	(3) give each class a	
	and system calls.	short evaluation test;	
5	File systems (3). Implementation aspects. Implementation strategies	let students discuss	
	overview, space management and related problems, hard and symbolic	and argue each other	
	links.	their solution; give	
6	Process management . Process model: definition, role, characteristics.	them the good	
	Linux and Windows process management system calls.	solution and let them	
7	Thread management . Thread model: user vs. kernel threads,	evaluate their own	
	implementation problems, usage, performance aspects. Basic scheduling	one;	
	algorithms (FIFO, SJF, Priority-based). Linux and Windows process	(4) propose 2-3	
	thread system calls.	interesting study	
8	Process synchronization (1) . Theoretical aspects. Context, definition,	cases of OSes to be	
	synchronization mechanisms, techniques and problems (locks,	prepared and	
	semaphores, monitors, mutual exclusion, starvation, deadlock).	presented by	
9	Process synchronization (2) . Classical synchronization patterns:	students;	
	producer/consumer, readers/writers, rendez-vous, barrier, dining	(5) students are	

	philosopher, sleeping barber. Similarities between different synchronization mechanisms.	invited to collaborate in research projects.	
10	Inter-process communication. Pipe files, shared memory, message		
	queues, signals.		
11	Memory management (1) . Context, definition, binding, basic techniques,		
	space management, addresses translation, swapping.		
12	Memory management (2). Paging and segmentation.		
13	I/O Devices Management . Principles, disks, clocks, character-oriented terminals.		
14	Security aspects . Security policies and mechanisms. Basic program's		
	vulnerabilities (buffer overflow).		
Bibli	ography		
	Andrew Tanenbaum. Modern Operating System, 2nd Edition, Prentice-Hall, 2	.005, ISBN 0-13-092641-	·8.
8.2.	Applications (Laboratory)	Teaching methods	Note
			S
1	Linux File System	(1) students are	
2	Linux Commands	presented a very brief	
3	Linux Shell Scripts	overview of the most	
4	Linux System Calls for File Access	important and difficult	
5	Linux System Calls for File and Directory Manipulation	aspects of the	
6	Windows File System (NTFS)	working subject;	
7	Linux Processes	(2) students are given	
8	Linux Threads	at the beginning of	
9	Windows Processes and Threads	each class a short	
10	Linux Semaphores	evaluation quiz;	
11	Linux Locks and Condition Variables	(3) students are given a hands-on tutorial to	
12	Linux pipes	practice with working	
13	Memory management.	subject's aspects and	
14	Security aspects. Buffer overflow detection and correction.	to solve problems	
	, ,	(4) students are given	
		challenging problems	
		for extra credit;	
Bibl	iography	,	
	ture slides and laboratory text and support at http://os.obs.utcluj.ro/moodle		

OS knowledge is a fundamental requirement in the CS field. We follow the CAM curricula guide. We also consult IT companies about their practical expecations regarding OS knowledge and adapt accordingly our course contents. In this sense, Linux and Windows are the most used Oses.

10. Evaluation

Activity	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the				
type						final grade				
Course		Check if students: understand fundamental OS concepts and are able to recognize an OS-related problem and find solution to it.		Small problem-like subject requiring students to apply the theoretical OS aspects to give a solution to that problem.		0.67				
Applicatio ns		Check if students are able to write C programs to use different OS provided system calls to solve practical problems.		Quiz tests. Programming problems, whose solution has to be implemented in C and run on computers.		0.33				
10.4 Minim	10.4 Minimum standard of performance.									
Know the ba	Know the basic system calls, understand their functionality and be able to use them.									

Course responsible Lect. dr. eng. Adrian Coleşa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca			
1.2	Faculty	Automation and Computer Science			
1.3	Department	Computer Science			
1.4	Field of study	Computer Science and Information Technology			
1.5	Cycle of study	Bachelor of Science			
1.6	Program of study/Qualification	Computer Science/ Engineer			
1.7	Form of education	Full time			
1.8	Subject code	28.			

2. Data about the subject

2.1	Subject name			Elem	Elements of Computer Assisted Graphics						
2.2	Subject area			Com	Computer Science and Information Technology						
2.3	3 Course responsible/lecturer				Prof.	Prof. dr. eng. Gorgan Dorian – dorian.gorgan@cs.utcluj.ro				uj.ro	
2.4	Teachers in charge of applications				S.I. dr. eng. Melenti Cornelia, S.I. dr. eng. Bacu Victor,						
						{cornelia.melenti, victor.bacu}@cs.utcluj.ro					
2.5	Year of study	Ш	2.6	Semester	4	2.7	Assessment	exam	2.8	Subject	DF/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur	Apı	olicat	tion	Lectur	App	licat	tion	Individual		
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]			.]	[hours / semester]						
			S	Г	Р		S	L	Р			
4	Elements of Computer Assisted Graphics	2	-	2	•	28	ı	28	-	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	application	2
							S	
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	application	28
							S	
Individual study								Hours
Man	ual, lecture material and notes, bibliog	raphy						20
Supp	olementary study in the library, online	and in th	e field	1				6
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, es	says			10
Tutoring							3	
Exams and tests							9	
Other activities							0	

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer programming (C language)
4.2	Competence	Applications development in C programming language

5. Requirements (where appropriate)

5.1	For the course	Projector, computer
5.2	For the applications	Laboratory attendance is mandatory
		Study of laboratory materials from the server

6. Specific competences

essiona	C3 – Problems solving using specific Computer Science and Computer Engineering tools (4 credits) C3.1 – Identifying classes of problems and solving methods that are specific to computing systems C3.2 – Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 – Applying solution patterns using specific engineering tools and mehods C3.4 – Evaluating, comparatively and experimentally, the available alternative solutions for performance optimization C3.5 – Developing and implementing informatic solutions for concrete problems
Cross	N/A

7.1	General objective	Learning about the architecture of a graphic system, the study of the graphic pipeline, the study of 2D graphic algorithms
7.2	Specific objectives	 Creation of the graphical model of a scene of objects Implementation of the basic algorithms that form the core of a graphic system Development of graphic applications in a high-level programming language (C, C++) Implementation of the main phases of the graphic transformation pipeline

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction. History. Examples		
2	Graphics systems – architecture, standards	November die	
3	Graphics devices – logic and physics devices, input, output and		
	interactive devices		
4	Graphics transformations pipeline – 2D and 3D transformations.	New multimedia	
	Matrix operators	teaching	During the
5	Mathematics in computer graphics	approaches will be used in classes. The course is	semester and before each exam
6	Lines scan conversion algorithms		
7	Circles scan conversion algorithms		
8	Polygons scan conversion algorithms	interactive and	there are a
9	Clipping algorithms – point, line, polygon and text	includes	few
10	Projections and viewing transformations	demonstrations	preparation
11	Photorealistic presentation of 3D objects – concepts, algorithms,	that exemplify	hours
	examples	graphical methods	planned.
12	Color models – color perception, color space and standards, color in	and algorithms.	
	software design		
13	Graphics formats – vector and raster formats, data compression,		
	Web technologies		
14	Graphics pattern grammars		
O:LI:	aranhy.		

Bibliography

- Foley J.D., van Dam, A., Feiner, S.K., Hughes, J.F., "Computer Graphics. Principles and Practice".
 Addison-Wesley Pblishing Comp., 1992.
 Watt A., "3D Computer Graphics". Addison-Wesley, 1998.

In virtual libarry

1. Course resurses, http://cgis.utcluj.ro/didactic

8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Basic graphics application structure	Documentation	Each
2	Output and input operations in graphics window	and examples will	student will
3	Inputs by keyboard, mouse and timer	be available to the	have to
4	Menu, icon, cursor and bitmap resources – Part 1	students, prior to	develop a
5	Menu, icon, cursor and bitmap resources – Part 2	the laboratory	specific
6	Coordinate systems. Viewing transformations	classes, on a	project
7	2D clipping. Cohen-Sutherland Algorithm	dedicated server.	based on

8	Projections. 2D and 3D transformations	The students will	the					
9	Lines scan conversion. Bresenham method	work	knowledge					
10	Polygon clipping. Sutherland-Hodgman Algorithm	independently but	acquired at					
11	Polygon clipping. Weiler Clipping Algorithm	will also be	the					
12	Photorealistic presentations	assisted by the	laboratory					
13	Color computation	teacher.	hours.					
14	Assessment							
Bibli	Bibliography							
In vi	In virtual libarry							
	1. Course and practical works, http://cgis.utcluj.ro							

This discipline is integrated into the Computers and Information Technology domain. The content is classic, yet modern, and introduces to students the fundamentals of graphic systems and 2D algorithms. The content of this discipline has been aligned with the information presented in similar disciplines from other major universities and companies from Romania, Europe and USA and has been evaluated by the authorized Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final
				methods	3	grade
Course		The written exam tests the understanding of the information presented in classes and the ability to apply this knowledge. The activity in class evaluates the active involvement of the students in the teaching process and their participation to the discussions, debates and other class activities during the entire semester.		Evaluation is performed through written exam (E) and classes activity (AC)		50% (E) 10% (AC)
Applications		Laboratory assessment evaluates the practical abilities obtained by the students. Through homework assignments the students have the opportunity to develop their skill in applying the notions, concepts and methods presented in class.		Evaluation is performed through written exam.		40%

10.4 Minimum standard of performance

Final mark: N=0,5*E+0,4*[(C+T)/2]+0.1*AC

Graduation requirement: N≥5;

Course responsible Prof. dr. eng. Dorian Gorgan

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	29.

2. Data about the subject

	z. Data about		- c									
2.1	Subject name				Foreign Language II (English, French, German - Technical							
						documents elaboration)						
2.2	2.2 Subject area					Comp	Computer Science and Information Technology					
2.3	3 Course responsible/lecturer				Lect. dr. Sonia Munteanu Sonia.Munteanu@lang.utcluj.ro							
2.4	2.4 Teachers in charge of applications				-							
2.5	Year of study	Ш	2.6	Semester	4	2.7	Assessment	Colloquium	2.8	Subject	DC/OB	
										category		

3. Estimated total time

Sem	Subject name	Lectur e	App	licat	ions	Lectur e	App	licat s	tion	Individual study	TOTAL	Credit
								,				
		[hours / week.]		.]	<u>[</u>	[hours / semester]						
			S	L	Р		S	┙	Р			
4	Foreign Language II (English, French, German - Technical documents elaboration)	2	-	-	-	28	-	1	-	24	52	2

3.1	Number of hours per week	2	3.2	of which, course	2	3.3	application	-
							S	
3.4	Total hours in the teaching plan	28	3.5	of which, course	28	3.6	application	-
							S	
Indiv	Individual study							
Man	Manual, lecture material and notes, bibliography							
Supp	plementary study in the library, online	and in th	e field	t				8
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, ess	says			6
Tutoring								0
Exams and tests								4
Other activities								

	Other dottvities					
3.7	Total hours of individual study	24				
3.8	Total hours per semester	52				
3.9	Number of credit points	2				

4. Pre-requisites (where appropriate)

4.1	Curriculum	B1 according to the Common European Framework for Languages
4.2	Competence	Continuous training

5. Requirements (where appropriate)

5.1	For the course	Subjects of semester 1, year 2
5.2	For the applications	

6. Specific competences

	N/A
Professional competences	
Cross	CT3 - Demonstrating the spirit of initiative and action for updating professional, economical and organizational culture knowledge (2 credits)

	11 Blocipinio objectivos (de reculto trem trio ney competences garried)						
7.1	General objective	Development of integrated skills in an engineering professional context					
7.2	Specific objectives	 Mastering documenting strategies, information processing; writing according to discourse patterns in specific purposes contexts; Acquiring strategies for handling difficult written text on a variety of science related topics; Comprehension and production of discipline appropriate text and genre. Use of lexical and grammar structures at B1/B2 language competence levels, according to CEFL. 					

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
2	Hierarchical structure of grammar. Natural language processing; morphology, syntax, discourse. Language knowledge in technology development for language processing and artificial intelligence. Student's research on NLP and Al topics which involve knowledge about	lecture, conversation, elicitation, practical	
3	language. Assignment discussion. Word structure: inflected and derivated words. Derivation as a means of creating technical vocabulary.	application of knowledge, assignment	
4	Phrases: noun headed phrases, verb headed phrases, adjective headed phrases, preposition headed phrases.	discussion	
5	Simple and complex sentences. Frequently used phrase/sentence structures in technical texts: coordination and subordination in finite and non-finite clauses.		
6	Cohesion and coherence in discourse. Readibility of technical texts: syntactic parallelism, sentence rephrasal, nominalization, lexical choice		
7	Structure of information in paragraphs: general-particular patterns, themerheme, hypothesis and validation.		
8	Mid term evaluation		
9	The informative function of science discourse: information structure, impersonal expression, nominalized theme.		
10	Functional and rhetorical organization of written science discourse: genres (textbooks, journal articles and scientific posters)		
11	Information organization in scientific posters: functional and structural patterns. Design options and selection of information – from the journal article to the poster.		
12	Formulaic language in science discourse: multifunctional lexical bundles. Interpersonal function of science discourse: hedges, boosters and author mention in science discourse.		
13	Disciplinary variation in science discourse: professional communities, discourse communities. Selecting from language resources according to disciplinary practices.		

14	Test.							
Biblio	Bibliography							
1.Mu	1.Munteanu, SC (2013) Academic English for Science and Engineering. Cluj-Napoca: Casa Cartii de Stiinta.							
ISBN	ISBN 978-606-17-0398-2.							
2.Sw	2.Swales John M. & Christine B. Feak (2001) Academic Writing For Graduate Students - Essential Tasks And							
Skills	s, Ann Arbor: The University Of Michigan Press.							
3. Hyl	and Ken (2006) English For Academic Purposes - An Advanced Resource B	ook, London: Routle	edge					
8.2. <i>F</i>	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes					
1	-							
Biblio	Bibliography							
_								

Mastering a foreign language will support students in a more flexible integration in the labour market, and have improved personal development. The introduction in the language for specific purposes will facilitate reading more documents in the field of study.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final
				methods	3	grade
Course		Assessment and homework completion in due time; Ability to comprehend below and above sentence syntactic and morphologic structures specific to science discourse; to read from sources, to comprehend complex text (journal articles, textbooks); write and present a poster.		Oral presentation of homework and assignment tasks; Two written tests or one test and science poster.		assignment/ homework = 20% mid-term test = 30% poster/final test = 40% poster presentation =10% total = 100%
Applications						

10.4 Minimum standard of performance

Minimum 60% of the final test, regarding language, lexical and discourse structures used in the technical discourse, linking words, verbs in impersonal moods, nominal groups, revision and correction of written texts. Assignment completion, minimum 50% of the mid term evaluation.

Course responsible Lect. dr. Sonia Munteanu