	1. Data about the program of study							
1.1	Institution	The Technical University of Cluj-Napoca						
1.2	Faculty	Automation and Computer Science						
1.3	Department	Mathematics						
1.4	Field of study	Computer Science and Information Technology						
1.5	Cycle of study	Bachelor of Science						
1.6	Program of study/Qualification	Computer Science/ Engineer						
1.7	Form of education	Full time						
1.8	Subject code	1.						

2. Data about the subject

2.1	Subject name					Math	Mathematical Analysis I (Differential calculus)					
2.2	Subject area					Computer Science and Information Technology						
2.3	3 Course responsible/lecturer					Prof.	Prof. dr. Dumitru Mircea IVAN					
2.4	Teachers in ch	narge	e of a	applications		Lect. Mircea RUS, Lect. Adela CAPATA						
2.5	Year of study	Ι	2.6	Semester	1	1 2.7 Assessment exam 2.8 Subject DF/OB					DF/OB	
	_									category		

3. Estimated total time Se Subject name Lecture Applications Lecture Applications Individual TOTAL Credit m. study [hours / week.] [hours / semester] S Ρ Ρ S L L Mathematical Analysis I -1 2 ---2 28 28 48 104 4 (Differential calculus)

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
	Total hours in the teaching plan	56		of which, course	28	3.6	applications	28	
Individual study									
Manual, lecture material and notes, bibliography								20	
Supp	plementary study in the library, online	and in th	e fielc	1				4	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								21	
Tutoring								0	
Exams and tests							3		
Other activities							0		
3.7 Total hours of individual study 48									
3.8 Total hours per semester 104									

4 Pre-requisites (where appropriate)

Number of credit points

	4. Pre-requisites (where appropriate)									
4.1	Curriculum	Basic knowledge of Differential Calculus and Set Theory								
4.2	Competence	Competences in elementary Differential Calculus: elements of set								
		theory, limits, sequences and series, derivatives.								

4

	5. Requirements (where appropriate)							
5.	5.1 For the course Videoprojector							
5.	2	For the applications	Videoprojector					

6. Specific competences

3.9

Professional competences	 C1 – Operating with basic Mathematical, Engineering and Computer Science concepts C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.3 – Building models for various components of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
Cross competences	N/A

7.1	General objective	A presentation of the concepts, notions, methods and fundamental techniques used in differential calculus.						
7.2	Specific objectives	Use of the differential calculus in order to solve problems in engineering. Use of the differential calculus in modelling and solving practical problems concerning spatial forms.						

8. Contents

n
n
n
hods Notes
n

7	Exercises concerning mean-value theorems and Taylor's formula for real	activities
	functions of one variable.	
8-	Exercises related to: partial derivatives, derivative of composite functions,	
10	gradient, directional derivative, differential of functions of several variables,	
	Taylor's formula for functions of several variables.	
11	Exercises related to power and Fourier series.	
-		
12		
13	Exercises related to implicit functions, change of coordinates and	
	variables.	
14	Exercises concerning unconditional and conditional extrema.	
Bibli	ography	
	1. Dumitru Mircea Ivan, et al. Analiză matematică - Culegere de probleme pe	entru seminarii, examene şi

concursuri. Editura Mediamira, Cluj-Napoca, 2002.

2. Mircea Ivan et al. Culegere de Probleme Pentru Seminarii, Examene şi Concursuri. UT Press, Cluj-Napoca, 2000.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final			
				methods	3	grade			
Course		Abilities of understanding and		Written		30%			
		using creatively the concepts		examination					
		and proofs							
Applications	Applications Abilities of solving problems and			Written		70%			
applying algorithms examination									
10.4 Minimur	10.4 Minimum standard of performance								
Ability to pres	Ability to present coherently a theoretical subject and to solve problems with practical content.								

Course responsible Prof.dr. Dumitru Mircea Ivan Head of department Prof.dr.eng. Rodica Potolea

	1. Data about the program of study							
1.1	Institution	The Technical University of Cluj-Napoca						
1.2	Faculty	Automation and Computer Science						
1.3	Department	Computer Science						
1.4	Field of study	Computer Science and Information Technology						
1.5	Cycle of study	Bachelor of Science						
1.6	Program of study/Qualification	Computer Science/ Engineer						
1.7	Form of education	Full time						
1.8	Subject code	2.						

2. Data about the subject

2.1	Subject name				Line	Linear Algebra						
2.2	Subject area					Com	Computer Science and Information Technology					
2.3	3 Course responsible/lecturer					Prof.	Prof. dr. Ioan RASA Ioan.Rasa@math.utcluj.ro					
2.4	Teachers in charge of applications					Conf. dr. Daniela Inoan, Conf. dr. Dalia Cimpean						
	Dai						Daniela.Inoan@math.utcluj.ro; Dalia.Cimpean@math.utcluj.ro				.utcluj.ro	
2.5	Year of study	Ι	2.6	Semester	1	2.7	Assessment	exam	2.8	Subject	DF/OB	
	_					category						

3. Estimated total time

Sem	Subject name	Lecture Applications		Lecture Applications Individual study			Individual study	TOTAL	Credit			
		[hours / week.]		[hours / semester]								
			S	L	Ρ		S	L	Ρ			
1	Linear Algebra	2	2	-	•	28	28	-	-	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Indiv	vidual study							Hours
Man	ual, lecture material and notes, bibliog	graphy						20
Sup	olementary study in the library, online	and in th	e fielc	1				4
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						21		
Tutoring						0		
Exams and tests						3		
Other activities						0		
3.7	Total hours of individual study		48					
3.8	· · · · · · · · · · · · · · · · · · ·							

5.0	Total hours per semester	
3.9	Number of credit points	

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of Linear Algebra and Analytic Geometry
4.2	Competence	Competences in elementary Linear Algebra and Analytic Geometry:
		matrices, determinants, linear systems, vectors and lines in plane

4

5. Requirements (where appropriate)

5.1	For the course	Blackboard, videoprojector
5.2	For the applications	Blackboard, videoprojector

6. Specific competences

	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts
Professional competences	C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems
ter l	C1.3 – Building models for various components of computing systems
fes	C1.5 – Providing a theoretical background for the characteristics of the designed systems

Cross mpetences	N/A	
cor		

7.1	General objective	A presentation of the concepts, notions, methods and fundamental techniques used in linear algebra and analytic geometry.
7.2	Specific objectives	Use of the matriceal calculus (in the general context of linear algebra) in order to solve problems in engineering. Use of the vectorial calculus (in the general context of analytic geometry) in modelling and solving practical problems concerning spatial forms.

8. Contents

	ecture (syllabus)	Teaching	Notes
0.1. 2		methods	Notoo
1	Linear spaces. Definition. Linear subspaces. Examples.	Explanation	
2	Linear independence. Basis. Dimension. Change of basis.	Explanation	
3	Inner - product spaces. Definition, properties, Schwarz' inequality.	Demonstration	
Ŭ	Examples		
4	Linear transformations. Definition, elementary properties, Kernel and	Collaboration	
-	Image.		
5	The matrix associated to a linear transformation. The standard	Interactive	
	construction. Expresions in terms of coordinates.	activities	
6	Eigenvalues and eigenvectors. Definitions, invariant subspaces,		
	characteristic polynomials.		
7	The diagonal form. Canonical forms, diagonalizability.		
8	The Jordan canonical form. Construction of a Jordan basis and a Jordan		
	matrix.		
9	Functions of a matrix. The n-th power of a matrix. Elementary functions of		
	a matrix.		
10	The adjoint operator. Definition, properties, examples.		
11	Self-adjoint operators, unitary operators, properties of the eigenvalues		
	and eigenvectors.		
12	Bilinear forms, quadratic forms. The associated matrix.		
13	The canonical form. Reduction to a canonical form. The method of		
	eigenvalues and Jacobi's method.	_	
14	Conics and quadrics. Reduction to a canonical form. Geometric		
	properties.		
	graphy		
	I. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analyt	ic Geometry, Ed. Me	ediamira,
		1. l'autice 0005	
	2. V. Pop, I. Rasa, Linear Algebra with Applications to Markov Chains, Ed. M		Mataa
	Applications (Seminars)	Teaching methods	Notes
1	Determinants, matrices, geometric vectors	-	
2	Linear spaces, bases, dimension	-	
3	Inner-product spaces	Explanation	
4	Linear transformations. Examples		
5	Linear transformations characterized in terms of matrices	Demonstration	
6	Invariant subspaces, eigenvalues, eigenvectors		
7	Diagonalizable linear transformations	Collaboration	
8	Jordan bases, Jordan canonical forms	4	
9	Elementary functions of a matrix, examples	Interactive	
10	The adjoint operator	activities	
11	Special classes of operators	4	
12	Bilinear forms, quadratic forms	4	
13	Reduction to a canonical form		

14	Conics and quadrics, reduction to a canonical form			
Bibliography				

- 1. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analytic Geometry, Ed. Mediamira, 2012
- 2. V. Pop, I. Corovei, Algebra pentru ingineri. Culegere de probleme, Ed. Mediamira, 2003.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final
				methods	3	grade
Course		Abilities of understanding and using creatively the concepts and proofs		Written examination		30%
Applications		Abilities of solving problems and applying algorithms		Written examination		70%
10.4 Minimu	m sta	ndard of performance				
Ability to proc	ont o	oberently a theoretical subject and t		o problems with p	ractical	contont

Ability to present coherently a theoretical subject and to solve problems with practical content.

Course responsible Prof. dr. Ioan RASA

Head of department Prof.dr.eng. Rodica Potolea

	1. Data about the program of study					
1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4	Field of study	Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	3.				

2. Data about the subject

2.1	,				Spec	Special Mathematics I					
2.2	2 Subject area				Computer Science and Information Technology						
2.3	3 Course responsible/lecturer			Prof.	Prof. dr. Daniela ROŞCA Daniela.Rosca_at_math.utcluj.ro						
2.4	Teachers in ch	narge	e of a	applications							
2.5	Year of study	Ι	2.6	Semester	1	2.7	Assessment	exam	2.8	Subject	DF/OB
										category	

3. Estimated total time

Sem	Subject name	Lecture	_ecture Applications		Lecture	Applications		Individual study	TOTAL	Credit		
		[hours / week.]			[hours / semester]							
			S	L	Ρ		S	L	Ρ			
1	Special Mathematics I	2	2	-	-	28	28	-	•	72	128	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours	
Manual, lecture material and notes, bibliography							28	
Supp	elementary study in the library, online	and in th	e field					14
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							13	
Tutoring							7	
Exams and tests						10		
Other activities						0		
3.7	Total hours of individual study		72					
3.8	Total hours per semester		128					

4. Pre-requisites (where appropriate)

4.1	Curriculum	Algebra, highschool level (real profile)					
4.2	Competence	Notions of combinatorial theory (arrangements, permutations,					
		combinations); sets and operations with sets; notions of mathematical					
		logic; mathematical induction method, calculations with matrices					

5

5. Requirements (where appropriate)

`	5. Requirements (where appropriate)					
5.1	For the course	Blackboard, videoprojector, computer, graphic tablet				
5.2	For the applications	Blackboard, videoprojector, computer, graphic tablet				

6. Specific competences

3.9 Number of credit points

Cross ompetences	N/A	
8		

7.1	General objective	A presentation of the concepts, notions and fundamental methods used in counting and discrete probability theory. A presentation of basic concepts and properties in graph theory, basic algorithms and theorems based in graph theory, and their mathematical proof.
7.2	Specific objectives	Develop and apply strategies for solving combinatorial problems; Identification of patterns in solving combinatorial counting problems; Modeling and formulation, in terms of probability theory and specific notations, of concrete problems coming from random experiments and random processes; Identify standard discrete distributions of probability for solving probabilistic problems; Interpretation of numerical results in the problems modeled using random variables; Modelling of concrete problems using graph theory notions and concepts; Application of specific algorithms to problems modeled by classical graph theory (trees, minimum spanning trees, coding and decoding trees, construction Eulerian trails and Hamiltonian paths, the Chinese postman problem, flow problems, etc).

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Principles of counting and counting methods.	Windows Journal	
2	Recursions and generating functions.	software for	
3	Introduction to graphs. Definitions, notations, general properties. Connectivity. Graphs and digraphs representation.	graphic tablet , videoprojection	
4	Trees, sorting and searching: roted trees, decision trees, sorting trees.		
5	Binary trees and binary codes. Huffman codes.	Explanation	
6	Spanning trees. Depth-first search, breadth-first search. Minimum spanning tree in weighted graphs - Prim's and Kruskal's algorithm.	Demonstration	
7	Minimum spanning trees in directed graphs - Chu-Liu-Edmonds algorithm. Shortest path - Dijkstra's algorithm. Greedy algorithms. General properties and greedy algorithm for the maximum weight problem.	Collaboration	
8	Bipartite graphs. Matchings. Matchings in bipartite graphs. Maximum matchings.		
9	Eulerian graphs and Hamiltonian graphs. The postman's problem.		
10	Networks, flows and cuts. Max flow min cut theorem.		
11	Introduction to discrete probabilities: the axioms of probabilities, conditional probabilities, total probability and Bayes' formula.		
12	Probabilistic schemes: binomial, multinomial, Poisson, geometric, negative binomial, Poisson's urns.		
13	Random variables, examples of discrete random variables, operations with random variables.		
14	Expected value and variance. Covariance. Chebyshev's theorem and weak law of large numbers.		
1. T. 2. N.	graphy Toadere, Grafe, Teorie, algoritmi, aplicatii, Ed. Microinformatica, Cluj, 2002. Vornicescu, Grafe. Teorie si algoritmi, Ed. Mediamira, 2005. Rosca, Discrete Mathematics, Ed. Mediamira, 2007.		

3. D. Rosca, Discrete Mathematics, Ed. Mediamira, 2007.

4. A. Mitrea, Fundamente de teoria probabilitatilor, Ed. UTPress, 2003.

5. K. Bogart, S. Drysdale, C. Stein, Discrete Math for Computer Science Students, available online at <u>http://www.cs.dartmouth.edu/~ac/Teach/cs21-Winter04/</u>

6. N. L. Biggs, Discrete Mathematics, Oxford University Press, 2005.

7. R. Durret, The Essentials of Probability, Duxbury Press, 1994.

8.2. Applications (Seminars) Teaching methods Not						
1	Counting. The pigeonhole principle, counting set of pairs. Functions,					
	words. Selections with and without repetition.					
2	Partitions, classifications, distributions.					
3	Walks, trails, cycles in graphs. Graphs and digraphs representations.					
4	Problems related to graphs.					
5	Properties and applications of incidence matrices and adjacency matrices.	Windows Journal				
6	Applications of trees: decision problems, sorting algorithms.	software for				
7	Spanning trees: depth-first search, breadth-first search trees, properties.	graphic tablet,				
	Algorithms for minimum spanning trees.	videoprojection				
8	Algorithms for shortest path. Greedy algorithms for vertex coloring.	Evolution				
	General notions about planar graphs.	Explanation				
9	Bipartite graphs and matchings. Construction of alternating paths.	Demonstration				
10	Eulerian and Hamiltonian graphs. Algorithms for Eulerian and Hamiltonian	Demonstration				
	tours.	Collaboration				
11	Calculation of probabilities.	Conaboration				
12	The theorem on total probability and Bayes' formula with applications.					
13	Construction of random variables and calculation expected value and					
	variance.					
14	Applications of the weak law for large numbers.					
Bibli	ography					
	I. J. A. Bondy, U.S.R. Murty, Graph theory with applications, available onlin	e at				
http://www.ecp6.jussieu.fr/pageperso/bondy/books/gtwa/gtwa.htm						
	2. J. Gross, J. Yellen, Graph Theory and its Applications, CRC Press, 1999					
:	3. Hannelore Lisei, Sanda Micula, Anna Soos, Probability Theory through P	roblems and application	tions,			
	Cluj University Press, 2006.					

4. Arthur Enghel - *Probleme de matematică: strategii de rezolvare*, Ed. Gil, 2006.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

10.1 A	Assessment criteria	10.2	Assessment	10.	Weight in the final	
			methods	3	grade	
			Written		30.00%	
	reproducing the concepts and		examination			
	proofs					
	Abilities of solving problems and		Written		70.00%	
	applying algorithms		examination			
10.4 Minimum standard of performance						
05/10/14						
	10.1	10.1 Assessment criteria Abilities of understanding and reproducing the concepts and proofs Abilities of solving problems and applying algorithms	10.1Assessment criteria10.2Abilities of understanding and reproducing the concepts and proofs10.2Abilities of solving problems and applying algorithms10.2	10.1Assessment criteria10.2Assessment methodsAbilities of understanding and reproducing the concepts and proofsWritten examinationAbilities of solving problems and applying algorithmsWritten examination	10.1Assessment criteria10.2Assessment methods10. 3Abilities of understanding and reproducing the concepts and proofsWritten examination10. 3Abilities of solving problems and applying algorithmsWritten examination10. 3	

Course responsible Prof. dr. Daniela ROŞCA Potolea Head of department Prof.dr.eng. Rodica

	 Data about the program of study 	_
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	4.

2. Data about the subject

2.1	Subject name						Logic Design						
2.2	Subject area					Corr	Computer Science and Information Technology						
2.3	3 Course responsible/lecturer					Prof	. dr. eng. Octa	vian Creţ – <mark>O</mark>	ctavia	an.Cret@cs.utclu	<u>j.ro</u>		
2.4	Teachers in cl	narge	e of a	applications		As. I	As. Drd.Ing. Diana Irena Pop						
		-				Ing.(Cristian Turicu						
2.5	Year of study I 2.6 Semester 1 2.7 Assessment exam 2.8 Subject DID/OB							DID/OB					
						category							

Credit

5

	3.	Estimated total time										
Sem		Subject name	Lecture	Appl	icati	ons	Lecture	Appli	catio	ons	Individual study	TOTAL
			[hour	s/we	eek.]	۲]	nours /	' sen	nest	er]	
				S	L	Ρ		S	L	Ρ		
1		Logic Design	2	-	2	-	28	-	28	-	74	130

			1		r	1		
3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	4 Total hours in the teaching plan 56 3.5 of which, course 28 3.6 applications							
Individual study								Hours
Man	ual, lecture material and notes, bibliog	graphy						25
Supplementary study in the library, online and in the field							17	
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, e	ssays	5		17
Tuto	ring							6
Exar	ns and tests							9
Othe	er activities							0
3.7	Total hours of individual study		74					
3.8 Total hours per semester 130								

4. Pre-requisites (where appropriate)

-		
4.1	Curriculum	• N/A
4.2	Competence	Mathematics (Algebra), Physics (electricity)

5

5	5. Requirements (where approp	priate)
5.1	For the course	• A minimum of 75% course attendance rate is mandatory for being
		admitted to the final exam
5.2	For the applications	• Preliminary preparation of summaries from the indicated bibliography
		(laboratory textbook)

6. Specific competences

3.9 Number of credit points

C1 – Operating with basic Mathematical, Engineering and Computer Science concepts C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems

Cross mpetences	N/A	
con		

7.1	General objective	• The main objective of this discipline is to give to the students the bases of Logic Design, in order to make them able to analyze, design and implement any digital system.						
7.2	Specific objectives	 To reach this goal, students will learn to: Analyze and synthesize combinational logic systems; Analyze and synthesize synchronous and asynchronous sequential machines; Apply digital system design principles and descriptive techniques; Utilize programmable devices such as FPGAs and PLDs to implement digital systems; Understand timing issues in digital systems and study these via digital circuit simulation. 						

8. Contents

	_ecture (syllabus)	Teaching	Notes
		methods	
1	Introduction. Number systems and codes, errors		
2	Number representation systems. Binary arithmetic		
3	Boolean Algebra. Boolean functions. Logic gates. Digital systems and functions representation		
4	Methods for minimizing Boolean functions and systems of functions		
5	Combinational logic circuits (CLCs) analysis and design (synthesis). SSI and MSI CLCs.		
6	Methods for designing digital systems with SSI, MSI, LSI and VLSI circuits. Combinational Hazard.	Blackboard	
7	Sequential logic circuits. Latches and Flip-Flops.	presentation	N/A
8	Flip-Flops applications: frequency dividers, counters	discussions	
9	Flip-Flops applications: data registers, converters, memories		
10	Methods for designing digital systems using Flip-Flops		
11	Methods for designing digital systems using memories, multiplexers, decoders, counters		
12	Methods for designing sequential synchronous systems		
13	Methods for designing digital systems using programmable devices (I)		
14	Methods for designing digital systems using programmable devices (II)		
1. Co 2. Di 3. Fl	ography ontemporary Logic Design, Randy H. Katz, Benjamin Cunnings / Addison Wesley Pub gital Design Principles and Practices, John F. Wakerly, Prentice-Hall, 2000. PGA-based System Design, Wayne Wolf, PRENTICE HALL Professional Technical R		
	458 WWW DDDIT COM ISBN* 0-1.3-147461-0		e River,
	458 www.phptr.com ISBN: 0-13-142461-0. Applications (Laboratory)	Teaching methods	
	Applications (Laboratory)	Teaching methods	e River, Notes
8.2. 1	Applications (Laboratory) Basic Logic Circuits	Practical work	
8.2.	Applications (Laboratory) Basic Logic Circuits ActiveHDL Schematic Editor and Simulator (I)	Practical work on test boards,	
8.2. 1 2	Applications (Laboratory) Basic Logic Circuits	Practical work on test boards, FPGA boards,	
8.2. 1 2 3	Applications (Laboratory) Basic Logic Circuits ActiveHDL Schematic Editor and Simulator (I) ActiveHDL Schematic Editor and Simulator (II)	Practical work on test boards, FPGA boards, specialized	
8.2. 1 2 3 4	Applications (Laboratory) Basic Logic Circuits ActiveHDL Schematic Editor and Simulator (I) ActiveHDL Schematic Editor and Simulator (II) Combinational Logic Circuits (I)	Practical work on test boards, FPGA boards, specialized software,	
8.2. 1 2 3 4 5	Applications (Laboratory) Basic Logic Circuits ActiveHDL Schematic Editor and Simulator (I) ActiveHDL Schematic Editor and Simulator (II) Combinational Logic Circuits (I) Combinational Logic Circuits (II) – MSI circuits	Practical work on test boards, FPGA boards, specialized software, blackboard	Notes
8.2. 1 2 3 4 5 6	Applications (Laboratory) Basic Logic Circuits ActiveHDL Schematic Editor and Simulator (I) ActiveHDL Schematic Editor and Simulator (II) Combinational Logic Circuits (I) Combinational Logic Circuits (II) – MSI circuits Combinational Logic Circuits (III) – Complex circuits	Practical work on test boards, FPGA boards, specialized software, blackboard presentations,	Notes
8.2. 1 2 3 4 5 6 7	Applications (Laboratory) Basic Logic Circuits ActiveHDL Schematic Editor and Simulator (I) ActiveHDL Schematic Editor and Simulator (II) Combinational Logic Circuits (I) Combinational Logic Circuits (II) – MSI circuits Combinational Logic Circuits (III) – Complex circuits Synthesis of Combinatorial Logic Circuits using Programmable Logic Devices	Practical work on test boards, FPGA boards, specialized software, blackboard presentations, supplemental	Notes
8.2. 1 2 3 4 5 6 7 8	Applications (Laboratory) Basic Logic Circuits ActiveHDL Schematic Editor and Simulator (I) ActiveHDL Schematic Editor and Simulator (II) Combinational Logic Circuits (I) Combinational Logic Circuits (II) – MSI circuits Combinational Logic Circuits (III) – Complex circuits Synthesis of Combinatorial Logic Circuits using Programmable Logic Devices Flip-flops	Practical work on test boards, FPGA boards, specialized software, blackboard presentations,	Notes

12	The XILINX FPGA Family							
13	Synthesis of Sequential Logic Circuits using FPGA Devices							
14								
	ography							
1. An	1. Analiza și sinteza dispozitivelor numerice, Îndrumător de laborator, Ediția a-3-a, L. Văcariu, O. Creţ, A. Neţin, Ed. U.T.							
Press	s, Cluj-Napoca, 2009.							

9. Bridging course contents with the expectations of the representatives of the community, professional

associations and employers in the field
Since this discipline is a basic one in Computer Science, its content is "classic" but also modern because it familiarizes students with the modern principles of Logic Design (utilization of modern simulation and synthesis tools, FPGA and CPLD-based design etc.). Its contents have been discussed with major academia and industry actors from Romania, Europe and U.S.A. and it has been evaluated several times by Romanian Governmental Agencies like CNEAA and ARACIS.

10. Evaluation

Activity type	10.1 A	ssessment criteria	10.2	Assessment	10.	Weight in the final
				methods	3	grade
Course		Problems solving abilities		Written Exam		70%
Course	I	Presence, (Inter)activity				
Applications		Problems solving abilities				30%
Applications	I	Presence, (Inter)activity				
10.4 Minimur	n stand	lard of performance				
 Modeling an 	d solvir	ng typical Logic Design problems	using	the domain-specific for	orma	l apparatus

Course responsible Prof. dr. eng. Octavian Creţ Head of department Prof.dr.eng. Rodica Potolea

	 Data about the program of study 	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	5.

2. Data about the subject

2.1	Subject name						Computer Programming					
2.2	2 Subject area						Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer S.I. dr. ing. Marius Joldoş – Marius.Joldos@cs.utcluj.ro								<u>.0</u>			
2.4	Teachers in ch	narge	e of a	applications		As.dr. eng. Ciprian Pocol – <u>Ciprian.Pocol@cs.utcluj.ro</u>					<u>0</u>	
2.5	Year of study	I	2.6	Semester	1	2.7	Assessment	exam		Subject category	DF/OB	

3. Estimated total time

Sem	Subject name	Lectur e	Ар	plica s	tion	Lectur e	Арр	olicat s	ion	Individual study	TOTAL	Credit
		[hour	rs / v	veek	.]	[h	ours	s / se	me	ster]		
			S	L	Ρ		S	L	Ρ			
1	Computer Programming	2		2		28		28		74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours	
Manual, lecture material and notes, bibliography							27	
Supplementary study in the library, online and in the field					5			
Preparation for seminars/laboratory works, homework, reports, portfolios, essays					10			
Tutoring					7			
Exams and tests					5			
Other activities					0			
3.7	Total hours of individual study		74					
3.8	Total hours per semester		130					
~ ~			_	1				

J.O	Total hours per semester	
3.9	Number of credit points	

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5

5. Requirements (where appropriate)

5.2 For the applications	5.1	For the course	
	52	For the applications	

6. Specific competences

Cross npetences	N/A	
соп		

7.1	General objective	To learn how to use a general purpose high level programming language for writing programs
7.2	Specific objectives	 To understand a small-sized problem stated in a natural language, and develop a solution as a computer program. To understand code written by other programmers and reason critically about them. To design and implement computer programs in C using the structured/modular approach. To learn a good programming style. To determine the causes of programming errors and correct them

8. Contents

7

8 9 Pointers. Pointers and Arrays Memory allocation. Pointers to functions

String manipulation

8.1. l	Lecture (syllabus)	Teaching methods	Notes			
1	Programming Languages. Stages of Problem solving Using Computers. Algorithm – Definition, Properties. C features. Simple Data Types. Simple I/O					
2	Programming Style. Digital Representations. Variables and Expressions					
3	C Statements. C Preprocessing					
4	Functions (Structure, Invocation, Parameter passing, Functions as parameters, Variable scope). Functions for character processing					
5	Modular Programming. Debugging					
6	Pointers. Memory Management.					
7	Pointers and Arrays. Function Pointers	Lectures, demos	Uses a video-			
8	C Character Strings. C library	and discussions				
9	Structures, unions, enumerations. User-defined Types		projecto			
10	File Handling. High Level I/O.					
11	Recursion. Mechanism and Examples					
12	Working with time. I/O redirection. Variable length argument lists.					
13	Command line arguments. Self referential structures Sample Programs Explained. (Combinatorial generation. Simple Sorting Algorithms)	_				
14	Review					
1. P 2. K 3. S 4. Bi 5. W	ography aul and Harvey Deitel, C: How to program, Pearson Education, 6ed, 2010 N. King, C Programming: A modern Approach, W.W. Norton, 2008 tephen Prata, C Primer Plus, Sams, 5ed, 2004 ain W. Kernighan, Dennis M. Ritchie – The C Programming Language, Pren filliam H. Press – Numerical Recipes in C - The Art of Scientific Computing the address)		n the We			
1	Applications (Laboratory)	Teaching methods	Notes			
1	Pseudo code. Interactive Development Environments for C. Setting up and Using Codeblocks IDE		PCs			
2	Simple IO in C	Tutovia	equippe			
3	Expressions in C. I utoring,					
4	Statements in C	discussions, and	MinGW			
5	Functions. Debugging C programs	- assisted	C and			
6	Modular Programming	- program	Code-			
7	Deintere Deintere and Arroya	development	blocks			

blocks IDE

10	Structures, Unions, Enumerations				
11	11 High level I/O in C.				
12	12 Recursion				
13	13 Review				
14	14 Laboratory test				
Biblio	Bibliography				
1	1. Moodle site for course available at: <u>https://labacal.utcluj.ro</u>				

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1 Assessment criteria	10.2	Assessment	10.	Weight in the final		
			methods	3	grade		
Course	Written exam		Written exams:				
			In-class tests		10%		
			Final		60%		
Applications	Applications Laboratory test Evaluation of 30%						
			program				
			implementation				
10.4 Minimur	n standard of performance						
Correct solution	ons for min. 60% of the exam topics	and applic	ations				

Course responsible S.I.dr.ing. Marius Joldos Head of department Prof.dr.ing. Rodica Potolea

	 Data about the program of s 	tudy
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	6.

1. Data about the program of study

2. Data about the subject

2.1	Subject name					Phys	Physics					
2.2	2 Subject area					Com	Computer Science and Information Technology					
2.3	3 Course responsible/lecturer					Asso	Assoc. prof. dr. Radu Fechete					
2.4	Teachers in cl	narge	e of a	applications		As. c	drd. Mihai Gab	or; Research	As. c	lrd. Moldovan Dι	umitrita	
2.5	Year of study	Ι	2.6	Semester	1	2.7	Assessment	Colloquium	2.8	Subject	DF/OB	
								-		category		

3. Estimated total time

		1	1									
Se	m Subject name	Lectur	Ap	plica	tion	Lectur	App	olicat	tion	Individual		
		е	e s		е	S			study	TOTAL	Credit	
		[hou	rs / v	veek	.]	[hours / semeste		ster]				
			S	L	Ρ		S	L	Ρ			
1	Physics	3	-	1	-	42	-	14	•	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	3	3.3	applications	1
3.4	Total hours in the teaching plan	56	3.5	of which, course	42	3.6	applications	14
Individual study								Hours
Man	ual, lecture material and notes, bibliog	jraphy						16
Supp	plementary study in the library, online	and in th	e field	l				10
Prep	aration for seminars/laboratory works	, homewo	ork, re	eports, portfolios, e	essays	5		14
Tuto	ring							14
Exar	ns and tests							4
Othe	r activities							-
3.7 Total hours of individual study 48								
3.8 Total hours per semester 104								

3.8Total hours per semester3.9Number of credit points

4. Pre-requisites (where appropriate)

4.1	Curriculum	Good knowledge in high school physics Good knowledge in high school mathematics Some knowledge in operating computers (Word, Power Point, Excel)
4.2	Competence	To know how to plot a graph on millimeter graph paper, use of scientific calculator, to work in team.

4

5. Requirements (where appropriate)

5.1	For the course	Blackboard, Multi-media projector.
5.2	For the applications	Equipment from Physics laboratory.

6. Specific competences

Professional competences	 C1 – Operating with basic Mathematical, Engineering and Computer Science concepts C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.3 – Building models for various components of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
Cross competences	N/A

7.1	General objective	To identify, understand and explain the physical phenomenon.							
		To identify the parts of a practical laboratory work and to explain							
		how does it work using the theoretical concepts from the abstract.							
		To measure different type of quantities using different devices.							
		To process the experimental data and to determine based on them							
		different physical quantities. To plot graphs and to determine							
		different quantities using it. To solve problems using theoretical							
		criteria on different physical phenomenon already studied.							
7.2	Specific objectives	The students must know how to use: a multi-voltmeter; a frequency							
		generator; a calliper and a micrometre; a thermometer with mercury							
		and digital.							

8. Contents

		Tasakisa	Matea
	Lecture (syllabus)	Teaching methods	Notes
1	Introductions; Basics of kinematics: velocity, acceleration, linear motions, curvilinear motions, circular motion.		
2	Dynamics laws, conservations laws: linear momentum, kinetically momentum, energy		
3	Oscillatory motion: linearly harmonically oscillator, dumped oscillations, forced oscillations, resonance, Superposition of parallel and perpendicular oscillations		
4	Barometric equations. Boltzmann distribution function. Waves. Wave function. Differential equation, Characteristic phenomena: reflection, refraction, interference, diffraction, dispersion, absorption		
5	Elastic waves. Longitudinal waves in solids, liquids and gases. Wave intensity. Acoustics: sounds quality, closed chambers acoustics, sound reverberation, Doppler-Fizeau effect, ultrasounds	Oral presentation, discussion,	Students are
6	Electromagnetic waves: velocity, transversally, intensity, and range. Photometrical quantities. Polarization of light.	problematization , notes on	encourag ed to ask
7	Photonic optics: thermal radiation, photoelectrical effect, Compton effect, light pressure	blackboard, multimedia	questions
8	Waves attached to particles. Davisson-Germer experiment. Wave group. Schrödinger equation. Wave function properties. Potential gap. Potential barrier	presentation	
9	Hydrogen atom. Quantum numbers. Spin quantic number (magnetic loop, magnetic moment, orbital magnetic moment).		
10	Experimental proves of energy quantifications. Quantum transitions theory. Laser. Holography		
11	Electrons in solid body. Energy bands. Metals. Electrically conductibility		
12	Hall effect. Contact potential difference. Thermoelectrically effect. Peltier effect		
13	Intrinsic semiconductors. Extrinsic semiconductors. p-n Junction.		

	Transistor.		
14	Magnetic properties of solid body: magnetic moment, orbital magnetic moment, diamagnetism, paramagnetism, ferromagnetism.		
	Superconductibility		
Biblio	graphy		
1	R. Fechete, Fundamental physics for engineers, course notes.		
2	E. Culea, S. Nicoara, Fundamentals of Physics, RISOPRINT, Cluj-Napo	ca 2004	
2	R. Fechete, Elemente de Fizica pentru Ingineri, Ed. UTPress, 2008.		
2	I.Ardelean, Fizica pentru ingineri, Ed. UTPres, 2005.		
4	I. Coroiu, E. Culea, Fizica I, Ed. UT. Press, 1999.		
8.2.	Applications (Laboratory)	Teaching	Notes
		methods	
1	Longitudinal and transverse standing waves		Students
2	Polarizations of light		are
3	Optical spectroscopy	Practical work in	asked
4	The study of photoelectrical effect	the laboratory,	and
5	The study of thermoelectrically effect	Problematization.	encoura
6	The study of Hall Effect		ged to
7	The determination of the energy gap of a semiconductor		ask question
Bibli	bgraphy		S
	. R. Fechete, Fundamental physics for engineers, course notes.		

 Radu Fechete, Ramona Chelcea, Dumitriţa Moldovan, Simona Nicoară, Ilioara Coroiu, Codruţa Badea, Eugen Culea, Ioan Cosma, Nicolae Şerban, Fizică: Îndrumător de laborator, EDITURA U.T.PRESS, Cluj-Napoca, Romania, 2014, ISBN: 978-973-662-952-5.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1 Assessment criteria	10.2	Assessment	10.	Weight in the final
			methods	3	grade
Course	The ability to answer to theoretical questions and to solve practical problems		Written test (mark T) and oral presentation of a specific task (mark R)		T is 60% R is 30%
Applications	The presence is compulsory (100%). The activity during classes is appreciated		Questions on each class (mark SL)		10%
10.4 Minimur	m standard of performance				
The final cred AND SL≥5.	lit can be received only if each of the mar	k's co	omponents is fulfilled:	N≥5	AND T≥5 AND R≥5

Course responsible Assoc. prof. dr. Radu Fechete Head of department Prof.dr.ing. Rodica Potolea

	1.Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	7.

2. Data about the subject

2.1	Subject name						I (English, Fr			
2.2	Subject area				Computer Science and Information Technology					
2.3	Course responsible	e/lect	turer							
2.4	Teachers in charge	e of a	applications		Asist	t. drd. Ema Ac	lam, <u>adam@la</u>	ang.u	tcluj.ro	
	_				Asist	t.drd. Monica	Negoescu, <mark>Ne</mark>	goes	cu@mail.utcluj.re	<u>0</u>
					Asist	t.dr. Sanda Pă	iduretu <u>Sanda</u>	.Pad	uretu@lang.utclu	ij.ro
					Asist.dr. Maria Olt maria.olt@lang.utcluj.ro					
					Asist.dr. Cecilia Policsek <u>cecilia.policsek@lang.utcluj.ro</u>					
					Asist.dr. Florina Codreanucodreanu.florina@gmail.com					
					Lect. dr. Mona Tripon Mona.Tripon@lang.utcluj.ro					
					Asist. drd. Aurel Bărbînță Aurel. Barbinta@lang.utcluj.ro					
					Asist	t.dr. Adina Foi	ma <u>adina.forna</u>	a@ya	ahoo.com	
2.5	Year of study I	2.6	Semester	1	2.7	Assessment	Colloquium	2.8	Subject	DC/OB
							•		category	

3. Estimated total time

Sem	Subject name	Lectur	Application		Lectur	Application		Individual				
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]			[hours / semester]				ster]			
			S	L	Ρ		S	L	Ρ			
1	Foreign Language I (English, French, German)	-	2	-	-	-	28	-	-	24	52	2

3.1	Number of hours per week	2	3.2	of which, course	-	3.3	application s	2			
3.4	Total hours in the teaching plan	28	3.5	of which, course	-	3.6	application s	28			
Indiv	idual study	•					•	Hours			
Man	Manual, lecture material and notes, bibliography										
Supp	plementary study in the library, online	and in th	e fielc	1				4			
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, ess	ays			8			
Tuto	ring										
Exar	ns and tests							4			
Othe	er activities										
3.7 Total hours of individual study 24											
3.8 Total hours per semester 52											
3.9 Number of credit points 2											

5.7	
3.8	Total hours per semester
3.9	Number of credit points

4. Pre-requisites (where appropriate)

4.1	Curriculum	A2/B1 according to the Common European Framework for Languages
4.2	Competence	Team work

	5. Requirements (where approp	priate)
5.1	For the course	N/A
5.2	For the applications	Seminar attendance compulsory

	6. Specific competences
Professional competences	N/A
Cross competences	CT2 – Identifying, describing and conducting processes in the projects management field, assuming different roles inside the team and clearly and concisely describing, verbally or in writing, in Romanian and in an international language, the own results from the activity field.

7.1	General objective	Development of communicative competence in an engineering professional context
7.2	Specific objectives	 Mastering basic vocabulary and language structures typical of sciences studied Development of the skill of writing short technical texts

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1			
Biblio	graphy		•
8.2. /	Applications (Seminars)	Teaching methods	Notes
1	Introduction to languages for specific purposes		
2	Mathematics. Algebraic Formulae		
3	Geometry. Shapes and dimensions		
4	Infrastructure and manufacturing processes. Process description		
5	Safety norms.	Conversation,	
6	Writing instructions. Warnings. User guides	improving the	
7	Description of devices. Sensors	reading, writing,	
8	Location. Calculi and measurements	 speaking, listening skills, 	
9	Properties of materials. Description	working in pairs	
10	Forces and their laws.	and groups	
11	Cause and effect, Discourse markers.	and groups	
12	Green technologies. Design and project evaluation		
13	Description of an operation and a process.		
14	Final test		
Biblic	ography		
1	. Munteanu, S-C. (2004) Reading skills For Engineering Students, UTPres		
2	2. Granescu, M. et. al. Students' Grammar Of English, UTPress, Cluj-Napo	ca, 2001.	
3	 Bonamy, D. Technical English 1-2, Longman, London 		
4	. Tripon, Mona: Faszination Technik. Sprachtrainer Deutsch für Student	en technischer Univ	/ersitäten.
	Editura Napoca Star, Cluj-Napoca, 2012. ISBN 978-973-647908-3		
-	5. Odou M., Informatique.com, Clé international, 2010	_	
-	5. Constantin Paun, Limba franceză pentru știință și tehnică, EdituraNicules		
7	 Vlaicu, R., Grammaire du français scientifique et technique, Cluj-Napoca 662-2258-4 	a, UTPRESS, ISBN 2	2007 973-

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Mastering a foreign language will help students in a more flexible integration in the labour market, and have improved personal development. The introduction in the language for specific purposes will facilitate reading more documents in the field of study.

10. Evaluation

Activity type	10.1	Assessment criteria		Assessment		Weight in the final
				methods	3	grade
Course		-				
Applications		Assignments and tests are corrected and marked if submitted in due time. The undergraduate will be allowed to sit in the final test if he/she attends seminars in a proportion of 80% of the time.		Written test, Oral test		100%.
10.4 Minimur	n sta	ndard of performance				
The undergra the time.	duate	e will be allowed to sit in the final tes	st, if he	e/she attends semina	rs in	a proportion of 80% of
Final score: a	ttend	ance= 1pct, written test =5 pct, oral	test =	4 pct.		

Pass score is received if 60 % of both tests is produced by the undergraduate.

Head of department Prof. dr. eng. Rodica Potolea Course responsible Conf.univ.dr. Marinela Grănescu Teachers in charge of applications Asist. drd. Ema Adam, Asist.drd. Monica Negoescu, Asist.drd. Sanda Pădureţu Asist.drd. Sanda Pădureţu Asist.dr. Maria Olt Asist.dr. Cecilia Policsek Asist. drd. Aurel Bărbînţă Lect. dr. Mona Tripon Asist. dr. Forina Codreanu Asist. dr. Adina Forna

1.Data about the program of study

	1.Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	8.

2. Data about the subject

2.1	Subject name						Sport I								
2.2	Subject area					Com	Computer Science and Information Technology								
2.3	Course responsible/lecturer						oc. prof. Marin	Dumitrescu, F	PhD,	marind@efs.utc	luj.ro ,				
2.4	Teachers in ch	narge	e of a	applications		Asso	Assoc. prof. Viorel Moisin, PhD, Lecturer Alina Rusu, PhD,								
						Lect	urer Mihai Ola	nescu, PhD s	tuder	nt, As. prof. Bogd	lan Tanase				
2.5	Year of study	Ι	2.6	Semester	1	2.7 Assessment verification 2.8 Subject DC/OB									
										category					

3. Estimated total time

Sem	Subject name	Lecture	Appli	Applications		Lecture Applications I			Individual study	TOTAL	Credit	
		[hours / week.]			[hours / semester]							
			S	L	Ρ		S	L	Ρ			
1	Sport I	-	2	-	-	-	28	-	•	-	28	1

3.1	Number of hours per week	2	3.2	of which, course	-	3.3	applications	2
3.4	4 Total hours in the teaching plan 28 3.5 of which, course - 3.6 applications							28
Individual study								Hours
Manual, lecture material and notes, bibliography								-
Supplementary study in the library, online and in the field							-	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						-		
Tutoring						-		
Exams and tests							-	
Other activities						-		
3.7 Total hours of individual study -								
3.8 Total hours per semester 28								

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	physically fit, necessary skills, knowledge, skills and abilities gained in classes I-XII

1

5. Requirements (where appropriate)

<u>ر</u>	3. Requirements (where appropriate)					
5.1	For the course	Muncii Blvd, no.103-105, Cluj-Napoca,				
		Politehnica Swimming Complex				
5.2	For the applications	Sports Hall, Muncii Blvd, no.103-105, Cluj-Napoca				
		Outdoor and Fitness - Complex Polytechnic				

6. Specific competences

3.9 Number of credit points

0.0	
5 6	

Cross	ompetences
-------	------------

CT2 – Identifying, describing and conducting processes in the projects management field, assuming different roles inside the team and clearly and concisely describing, verbally or in writing, in Romanian and in an international language, the own results from the activity field.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Harmonious physical developmentMaintain health at a high standard
7.2	Specific objectives	 Capacity development effort Learning and motor skills development Education volitional qualities

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	-		
Biblio	graphy		•
8.2. /	Applications (Seminars)	Teaching methods	Notes
1-2	Discipline demands and promotion criterion		
3-4	Testing of movement skills, capacities and knowledge accumulated in secondary and high school		
5-6	Adaptation with physical effort		
7-8	Learning of technical process (methods) accessible and possible		
9- 10	Repetition (improving) of technical process (methods).	interactive	
11- 12	Learning new technical process (methods)		
13- 14	Semestrial verification		
Biblio	ography		
1. (Curs de Educație fizică – Litografiat UTC-N		
	Dezvoltare fizică generală pentru studenți – UTC-N		

3. Cultură fizică pentru tineret - UTPRES

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Sports activity there in the curriculum of universities and faculties in the country and abroad. Content is consistent with the expectations of professional associates and employers epistemic community representative of the afferent program.

10. Evaluation

Activity type	10.1	Assessment criteria		Assessment methods	-	Weight in the final grade	
Course		-		-			
Applications		70% + 30% Frequency Active Participation, sports skills and advances		By passing control samples			
10.4 Minimum standard of performance							

Course responsible Assoc. prof. Marin Dumitrescu Head of department Prof.dr.eng. Rodica Potolea