1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	44.

2. Data about the subject

2.1	Subject name				Com	Computer Networks					
2.2	Subject area				Com	Computer Science and Information Technology					
2.3	Course respor	nsibl	e/lec	turer		Prof.	Prof. dr. eng. Vasile Dădârlat – vasile.dadarlat@cs.utcluj.ro				
2.4	Teachers in ch	narge	e of a	applications			Assoc.prof. dr. eng. Peculea Adrian – Adrian.Peculea@cs.utcluj.ro				
						Lect	. dr. eng. lanc	u Bogdan – E	Bogda	n.lancu@cs.utcl	uj.ro
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DID/OB
	-									category	

3. Estimated total time

Sem	Subject name	Lectur e	Apı	plica s	tion	Lectur e	App	olicat s	tion	Individual study	TOTAL	Credit
		[hours / week.]		[h	ours	s / se	mes	ster]				
			S	L	Р		S	L	Р			
7	Computer Networks	2	-	2	-	28	-	28	•	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours
Manual, lecture material and notes, bibliog	graphy						44
Supplementary study in the library, online and in the field							10
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							20
Tutoring							
Exams and tests							
Other activities							
T T	1						•

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Basic knowledge in programming languages (C, Java)
		Computer architecture, Operating systems

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Classroom, PC with internet access

C2: Designing hardware, software and communication components								
C2.1: Describing the structure and functioning of computational, communication and software components								
and systems								
$\frac{\omega}{2}$ C2.2: Explaining the role, interaction and functioning of hardware, software and communication								
်ဖွဲ့ ၌ components								
C2.2: Explaining the role, interaction and functioning of hardware, software and communication components Output Description: Output Description: C2.2: Explaining the role, interaction and functioning of hardware, software and communication components C2.3: Building the hardware and software components of some computing systems using algorithms, but the components of some computing systems using algorithms, and technologies								
design methods, protocols, languages, data structures, and technologies								
C2.4: Evaluating the functional and non-functional characteristics of the computing systems using specific								
metrics								
C2.5: Implementing hardware, software and communication systems								
_α N/A								
SS S G								
Cross Deten								
Cross								
j S								

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Teamwork, working with partial and contradicting specifications
7.2	Specific objectives	Each student able to design LAN's software & hardware architecture

8.1. L	Lecture (syllabus)	Teaching	Notes
1	Introduction. Concepts, network types, characteristics, evolution, standards	Oral Presentations	
2	ISO-OSI Reference model and Internet's TCP/IP protocol stack. OSI abstract model presentation, description of protocol functions for every layer. General presentation for TCP/IP protocol stack	using multimedia means Q & A	
3	Data transmission techniques. Data transmission concepts, analog and digital transmission techniques, coding, communication channels	Interactive teaching	
4	Types of computer networks. Architectures, evolution, topologies, physical parameters		
5	Physical level. Transmission media, characteristics, performances, connectors, structured cabling system		
6	Medium access control. Medium access techniques for local (wired and wireless) and wide area networks		
7	Data Link level. Functions, problems, protocols, case study: HDLC		
8	Local Area Computer Networks. Fundamentals, architectures, evolution		
9	Local Area Computer Networks. Systems, performances		
10	Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers		
11	Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution protocol. Routing protocols		
12	Transport level protocols. TCP protocol; congestion control. TCP and UDP sockets		
13	General introduction to Internet applications. File transfer. Electronic mail, multimedia transmissions, network management		
14	General introduction to Internet applications. Security issues		
Biblic	graphy		· · · · · · · · · · · · · · · · · · ·

- 1. V.Dadarlat, E.Cebuc Retele Locale de Calculatoare de la cablare la interconectare, Editura Albastra (Microinformatica), Cluj, 2006, ISBN 973-650-161-2
- 2. W. Stallings, Data and Computer Communications; Prentice Hall, 2005
- 3. A. S. Tanenbaum, Reţele de Calcultoare; Agora Press,2004

8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Lab presentation; Elements of the structured cabling system	Practical	
2	Network connection techniques	exercises	
3	Spanning tree protocol	Brief	
4	Copper based media and cabling with UTP	presentation of	

5	Medium access methods	possible				
6	Flow control protocols	solutions				
7	Protocol Inspector	Self testing				
8	Optical Fiber and components	programmes				
9	Wireless access					
10	IP Addressing					
11	11 Network Inspector					
12	Network programming using sockets I					
13	Network programming using sockets II					
14	14 Lab exam					
Bibli	Bibliography					
1. N	otes & lab notes available at: ftp.utcluj.ro					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Course content is kept state of the art by using latest protocols and devices available on the market

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade			
Course		Interactivity and initial preparation, intermediary and final written examinations		Written exam (2,5 h).		70%			
Applications		Quality of practical work, participation		Continuous assessment, final written colloquium		30%			
10.4 Minimur	10.4 Minimum standard of performance								
Grades > 5 fc	Grades > 5 for both theoretical and practical assessments								

Course responsible Prof. dr. eng. Vasile Dădârlat

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	45.

2. Data about the subject

2.1	.1 Subject name				Distributed Systems						
2.2	2 Subject area			Com	Computer Science and Information Technology						
2.3	2.3 Course responsible/lecturer			Prof.	Prof. dr. eng. Ioan Salomie – <u>Ioan.Salomie@cs.utcluj.ro</u>						
2.4	Teachers in charge of applications					SI.D	Sl.Dr.Eng. Tudor Cioara, Sl.Dr. Eng. Ionut Anghel, As. Drd. Marcel				
						Anta	I, As. Drd. Cla	audia Pop, As	s. Drd.	Dorin Moldovan	1
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DS/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	Apı	plica s	tion	Lectur e	App	licat s	tion	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]			ster]					
			S	L	Р		S	L	Р			
7	Distributed Systems	2	-	2	1	28	-	28	14	60	130	5

3.1 Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4 Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Individual study							Hours
Manual, lecture material and notes, bibliog	raphy						18
Supplementary study in the library, online and in the field							6
Preparation for seminars/laboratory works	, home	work,	reports, portfolios, e	essays	;		24
Tutoring							
Exams and tests							12
Other activities						18	
3.7 Total hours of individual study		60			•	•	•

	Total hours of individual study	60
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer networks
4.2	Competence	Ability to analyze and design a local network using simulators available

5. Requirements (where appropriate)

5.1	For the course	Whiteboard, projector, computer
5.2	For the applications	Computers, software specific

- C4 Improving the performances of the hardware, software and communication systems (2 credits)
- **C4.1** Identifying and describing the defining elements of the performances of the hardware, software and communication systems
- **C4.2** Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
- **C4.3** Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems
- **C4.4** Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
- **C4.5** Developing professional solutions for hardware, software and communication systems based on performance optimization
- **C5 -** Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits)
- **C5.1** Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- **C5.2** Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field
- C5.3 Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
- C5.4 Proper utilization of the quality, safety and security standards in the field of information processing
- **C5.5** Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
- C6 Designing intelligent systems (1 credit)
- **C6.1** Describing the components of intelligent systems
- C6.2 Using domain-specific tools for explaining and understanding the functioning of intelligent systems
- C6.3 Applying the fundamental methods and principles
- for specifying solutions for typical problems using intelligent systems
- **C6.4** Choosing the criteria and evaluation methods for the quality, performances and limitations of intelligent systems
- **C6.5** Developing and implementing professional projects for intelligent systems

Cross competences N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Capacity to analyse, develop and implement distributed software systems
7.2	Specific objectives	-Capacity of designing distributed systems at both architectural and components'
		level by using the main concepts and paradigms of the domain as well as the
		capacity of understanding the relationships of the domain with other computer science areas.
		-Capacity of identifying the main models, techniques and technologies that could
		be used in the design of distributed systems by considering a set of functional and non-functional specifications and constraints
		-Capacity of developing and using service based technologies for designing distributed systems
		-Capacity of using Java and .NET, Spring, Angular JS and other Web technologies
		for designing distributed systems

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction – Characterization of Distributed Systems	-Using modern	
2	Distributed System Models	multimedia	

3	Non-Functional Requirements	teaching methods
4	Inter-process Communication	and direct access to internet:
5	Indirect Communication	-Challenging
6	Remote Procedure Call (RPC)	questions during lecturers
7	Distributed Computation Model	- lecturers - Students are
8	Time and Causality in Distributed Systems	invited to
9	Global States and Snapshots	collaborate in research projects
10	Distributed Data Processing – Concepts , Reference Architectures	-Personal ,
11	Distributed Data Processing – Data Distribution Techniques	assistance hours during the
12	Distributed Transactions	semester and
13	Distributed Concurrency Control	before the exam
14	Overview of Google Distributed Technologies]

Bibliography

- 1. G. Coulouris, J.Dollimore, T.Kindberg Distributed Systems. Concepts and Design, Addison Wesley, 2005
- 2. A. Tanenbaum, M. van Steen Distributed Systems, Prentice Hall, 2002
- 3. A.D. Kshemkalyan M.Singhal Distributed Computing, Cambridge Press 2008
- 4. Ioan Salomie, Tudor Cioara Lecture Notes, Lab Notes Project Notes and Assignments http://www.coned.utcluj.ro/~salomie/DS Lic

8.2.	Applications (Laboratory, Projects)	Teaching methods	Notes
1	Intro to Lab Resources	-Pre-defined	
2	A1. Request-Reply Communication Paradigm	exercises and	
3	P1. Spring MVC Framework	assignments -Using modern	
4	A1.1 The Basics (examples and hands on)	multimedia	
5	A1.2 Web application using Request - Reply	teaching	
6	A2. Remote Procedure Call (RPC)	methods and	
7	A2.1 The Basics (examples and hands on)	direct access to	
8	A2.2 RPC application using distributed objects (Java RMI or .NET)	internet; -Students are	
9	P2. Angular JS	invited to	
10	A3. Asynchronous communication using messaging	collaborate in	
11	A3.1 The Basics (examples and hands on)	research	
12	A3.2. Asynchronous DS application using Java or .Net messaging	projects	
	frameworks	-Personal - assistance	
13	A4. Service Oriented Distributed Systems – Application design using 3 services (SOA-Java, SOANet and REST (Java or .Net))	hours during the semester and	
14	Evaluation	before the exam	

Bibliography

- 1. Ioan Salomie, Tudor Cioara, Ionut Anghel, Tudor Salomie Distributed Computing and Systems A practical Approach, Albastra Publ. House, 2008
- 2. Ioan Salomie, Tudor Cioara Lecture Notes, Lab Notes Project Notes and Assignments http://www.coned.utcluj.ro/~salomie/DS_Lic

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Distributed Systems is a subject of the domain "Computers and Information Technology".

It teaches students about the development and implementing of distributed software systems. The content was developed based on the analysis of similar disciplines from other universities as well as based on the requirements of the IT employees. The content was also evaluated by Romanian governmental agencies CNEAA and ARACIS.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the
				methods		final grade
Course		The level of assimilation of the knowledge about distributed systems, teacher during		Written Exam		50%

	the course		
Applications	-Capacity of designing distributed	Assignments	30%
	systems at both architectural and	evaluation,	
	components' level by using the main	Project evaluation	20%
	concepts and paradigms of the domain as	evaluation	
	well as the capacity of understanding the		
	relationships of the domain with other		
	computer science areas.		
	-Capacity of identifying the main models,		
	techniques and technologies that could be		
	used in the design of distributed systems		
	by considering a set of functional and		
	non-functional specifications and		
	constraints		
	-Individual activity during course, lab and		
	project		
	-Presence		

Course responsible Prof. dr. eng. Ioan Salomie

^{10.4} Minimum standard of performance
-To be able to design and implement distributed software systems

⁻At least mark 5 at the exam, lab and project evaluation

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	46.10

2. Data about the subject

				,								
2.1	Subject name				Input/Output Systems and Peripheral Devices							
2.2	Subject area					Com	Computer Science and Information Technology					
2.3	3 Course responsible/lecturer					Prof.	Prof. Dr. Eng. Zoltan Francisc Baruch –					
						Zoltan.Baruch@cs.utcluj.ro						
2.4	Teachers in charge of applications					Prof. Dr. Eng. Zoltan Francisc Baruch –						
					Zoltan.Baruch@cs.utcluj.ro							
						Eng.	Mihai Grigore	escu – <u>mihaig</u>	rigore	scu13@gmail.co	<u>om</u>	
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DS/OP	
										category		

3. Estimated total time

Sem	Subject name	Lectur	App	olica	tion	Lectur	App	licat	ion	Individual		
-		е		S		е		S		study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	L	Ρ			
7	Input/Output Systems and Peripheral Devices	2	-	2	-	28	•	28	•	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	130	3.5	of which, course	28	3.6	applications	28
Individual study							Hours
Manual, lecture material and notes, bibliog	graphy						34
Supplementary study in the library, online and in the field							
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							18
Tutoring							5
Exams and tests							
Other activities							0
		400					

3.7	Total hours of individual study	130
3.8	Total hours per semester	74
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 Curriculum Computer Programming, Computer Architectu		Computer Programming, Computer Architecture			
4.2 Competence		Competences of disciplines Computer Programming and Computer			
		Architecture			

5. Requirements (where appropriate)

	the demonstrate (minero espera	- primitely
5.1	For the course	Projector, computer
5.2	For the applications	Computers, the Microsoft Visual Studio programming environment

- C4 Improving the performances of the hardware, software and communication systems (2 credits)
- C4.1 Identifying and describing the defining elements of the performances of the hardware, software and communication systems
- **C4.2** Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
- **C4.3** Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems
- **C4.4** Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
- **C4.5 -** Developing performance based professional solutions for hardware, software and communication systems
- **C5** Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (3 credits)
- **C5.1** Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- **C5.2** Using interdisciplinary knowledge for adapting an information system to application domain requirements
- C5.3 Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
- C5.4 Adequate utilization of quality, safety and security standards in information processing
- **C5.5 -** Realization of a project including problem identification and analysis, design and development, while proving the understanding of the basic quality needs and requirements

 N/A

Cross competences

Professional competences

7. Discipline objectives (as results from the key competences gained)

	Ti Diocipinio Cojectivos (ao recaito irem uno nej competences gamea)						
7.1	General objective	Knowledge of operation and performance parameters for input/output interfaces and peripheral devices; ability to communicate with controllers of peripheral devices					
7.2	Specific objectives	 Using basic methods and principles for enhancing performance of computer systems Designing input/output interfaces for connecting various devices to the computer Designing and implementing in software input/output protocols Writing system programs for controlling input/output interfaces 					

8.1. L	Lecture (syllabus)	Teaching	Notes
		methods	
1	Introduction. Programmed I/O		
2	Interrupt-Driven I/O. Direct Memory Access. I/O Processors		
3	Buses. Electrical Considerations. Synchronous and Asynchronous Buses.		
	Bus Arbitration. VME Bus		
4	Local Buses. PCI Bus. PCI-X Bus. PCI Express Bus		
5	PCI Bus Variants for Personal Computers. PCI Bus Variants for Industrial	- PowerPoint	
	Systems		
6	Serial Buses: I ² C; SPI; USB	presentations - Questions,	N/A
7	Mid-Term Exam	discussions	
8	Liquid Crystal Displays. Liquid Crystals. TN Technology. Addressing	uiscussions	
	Methods. Backlighting		
9	Liquid Crystal Displays (cont.). Characteristics. VA Technology. IPS		
	Technology		
10	Plasma Displays. Field Emission Displays. Organic LED Displays		
11	Graphics Adapters. Structure of a Graphics Adapter. Color		

	Representation. Video Memory. Graphics Accelerators. 3D Accelerators		
12	Graphics Processing Units. Digital Interfaces for Monitors: DVI; HDMI;		
	DisplayPort		
13	Optical Discs. Physical Medium. Data Organization and Encoding. The		
	CD-ROM Drive. Types of Compact Discs		
14	DVD Discs. Blu-Ray Discs		
	graphy		
	aruch, Z. F., Computer Input/Output Systems (in Romanian), Cartea Albastră,	Cluj-Napoca, 2000,	ISBN
	9443-39-7.		
	osch, Winn L., Hardware Bible, Sixth Edition, Que Publishing, 2003, ISBN 0-7		
	Applications (Laboratory)	Teaching methods	Notes
1	The Serial Port (I)		
2	The Serial Port (II)		
3	The PCI Express Bus (I)		
4	The PCI Express Bus (II)		
5	The System Management Bus (I)	- Additional	
6	The System Management Bus (II)	explanations	
7	The Universal Serial Bus (I)	- Using a	N/A
8	The Universal Serial Bus (II)	programming	14// (
9	Printers	environment for	
10	The SCSI Interface	the C language	
11	The ATA Interface (I)		
12	The ATA Interface (II)		
13	Compact Discs. The ATAPI Interface		
14	Laboratory Colloquy		

9. Bridging course contents with the expectations of the representatives of the community, professional

1. Lecture slides and laboratory works at http://users.utcluj.ro/~baruch/en/pages/teaching/inputoutput-

The contents of the discipline has been corroborated with the contents of similar disciplines in the USA and Europe, as well as with chapters related to input/output systems of acknowledged manuals used in prestigious universities. The discipline has been evaluated by the ARACIS agency.

10. Evaluation

Bibliography

systems.php

associations and employers in the field

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Understanding theoretical concepts of input/output systems and the principle of operation for peripheral devices		Written exam		70%
Applications		Ability to write communication programs with controllers of peripheral devices		Written evaluation		30%
10.4 Minimu	m sta	ndard of performance				
Finishing at le	east o	ne application in each laboratory se	ession			

Grade > 5 for the written exam; Grade > 5 for the laboratory written evaluation

Course responsible Prof. Dr. Eng. Zoltan Baruch

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	46.2

2. Data about the subject

2.1	Subject name			Parallel and Distributed Computing							
2.2	Subject area				Computer Science and Information Technology						
2.3	Course responsible/lecturer				S.I.dr.ing. Anca Hangan – Anca.Hangan@cs.utcluj.ro						
2.4	Teachers in ch	narge	of a	applications		S.I.dr.ing. Anca Hangan – Anca.Hangan@cs.utcluj.ro					
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DS/OP
	-									category	

3. Estimated total time

Sem.	Subject name	Lectur e	Apı	olica s	tion	Lectur e	App	olicat s	tion	Individual study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	L	Р			
7	Parallel and Distributed Computing	2	-	2	-	28	-	28	-	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
	1		· · · · · · · · · · · · · · · · · · ·			_ ' '	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							
Manual, lecture material and notes, biblio	graphy						28
Supplementary study in the library, online and in the field							14
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							24
Tutoring							4
Exams and tests							
Other activities							N/A
2.7 Total hours of individual atudy		7/					

	Total hours of individual study	74
	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

_			/
	4.1	Curriculum	Fundamental Algorithms, Fundamental programming techniques
	4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	Whiteboard, projector, computer
5.2	For the applications	Computers, software specific

- C4 Improving the performances of the hardware, software and communication systems (2 credits)
- **C4.1** Identifying and describing the defining elements of the performances of the hardware, software and communication systems
- **C4.2** Explaining the interaction of the factors that determine the performances of hardware, software and communication systems
- **C4.3** Applying fundamental methods and principles for increasing performance of hardware, software and communication systems
- **C4.4** Choosing criteria and methods for performance evaluation of hardware, software and communication systems
- **C4.5** Developing professional solutions for hardware, software and communication systems based on performance optimization
- **C5** Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (3 credits)
- **C5.1** Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator
- C5.2 Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of the application field
- **C5.3** Using fundamental principles and methods for security, reliability and usability assurance of computing systems
- C5.4 Adequate utilization of quality, safety and security standards in information processing
- **C5.5** Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

Cross competences

Professional competences

N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	 Students become aware of differences and similarities between parallel and distributed computing so the students understand the boundaries of both domains. Students become familiar with the principles of designing parallel programs. Students become familiar with the main classes of distributed algorithms.
7.2	Specific objectives	Parallel algorithms performance and scalability. Parallel algorithms design. Distributed algorithms: time synchronization, distributed mutual exclusion, causal ordering, leader election and snapshots.

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction: goal, administrative issues, definition of parallel system and distributed systems.	Interactive lectures using PPT	
2	Performance and scalability: metrics, scalability definition, Amdahl's law.	presentations,	
3	Parallel algorithm design: parallelization process, data dependency.	exercises (at	
4	Parallel algorithm design: case study: ocean simulation.	whiteboard) and	
5	Parallel algorithm design: decomposition techniques, mapping techniques for load balancing.	questions addressed to the	
6	Interconnection networks: static interconnection networks (metrics, topologies), dynamic interconnection networks (buses, crossbars, multistage networks).	students.	
7	Dense matrix algorithms: matrix-vector multiplication (1D partitioning and 2D partitioning, comparison 1D to 2D), matrix-matrix multiplication (2D partitioning, Cannon algorithm).		
8	Time: physical clocks synchronization (Cristian algorithm, Berkeley algorithm, Network Time Protocol), logical clocks (Scalar time, Vector time, efficient implementation of vector clocks - Singhal-Kshemkalyani).		
9	Distributed mutual exclusion: problem definition, Token-ring, Suzuki-		

	Kasami, central coordinator, Lamport, Ricart-Agrawala.	
10	Causal ordering: problem definition, Birman-Schiper-Stephenson, Schiper-Eggli-Sandoz.	
11	Leader election: problem definition, general networks (FloodMax, OptFloodMax), synchronous / asynchronous ring (LeLann, Chang-Roberts, Hirschberg-Sinclair).	
12	Leader election: synchronous / asynchronous ring (Franklin, Peterson), anonymous ring (Itai-Rodeh).	
13	Snapshot: problem definition, Chandy-Lamport, Spezialetti-Kearns, Lai-Yang.	
14	Data analysis with Hadoop Discussion on parallel vs. distributed vs. concurrent.	

- 1. Parallel and Distributed Computing Lecture notes C. Ivan ,http://ftp.utcluj.ro/pub/users/civan/PDC
- 2. Concepte, mecanisme și soluții middleware pentru dezvoltarea sistemelor distribuite, C.Ivan, Ed.Risoprint (CNCSIS), ISBN 987-973-53-1776-8, 2016
- 3. Arhitecturi paralele de calcul, C. Ivan , Editura Roprint (CNCSIS) ,ISBN 973-354-23-4-1, 2001
- 4. Parallel Programming for Multicore and cluster systems ,Rauber T, Runger. G, Springer Verlag
- 5. ISBN 978-3-642-04817-3,2010
- 6. Introduction to Distributed Systems -Concepts and design. George Coulouris, Jean Dollimore and Tim Kindberg, Prentice Hall, ISBN 0201-619-180, 2005 si editia revizuită 2008
- Distributed computing: principles, algorithms and systems, M. Singhal, A Kshemkalyani, Cambridge Unive ISBN-13 978-0521876346, 2008

8.2. /	Applications (Laboratory)	Teaching methods	Notes
1	Modern computing models. Concurent vs. parallel vs distributed.	Problem based	
2	Multithreading and concurrency in Java.	approach.	
3	Shared memory parallel programming.(OpenMP).Fundamental parallel		
	algorithms implementation and analysis. (serch, graph, matrix)		
4	Shared memory parallel programming.(OpenMP).Fundamental parallel algorithms implementation and analysis.		
5	Message passing parallel programming (MPI). Fundamental parallel algorithms implementation and analysis. (serach, graph, matrix)		
6	Message passing parallel programming (MPI). Fundamental parallel algorithms implementation and analysis.		
7	Other parallel programming libraries (Pj2, PP –Net)		
8	Distributed programming – Sockets		
9	Distributed programming - Remote methods invocation		
10	Distributed algorithms- Logical clocks, leader election, distributed mutual exclusion.		
11	Group communication		
12	P2P systems		
13	Parallel processing in distributed context. Models, frameworks		
14	Project presentation/Laboratory test		

Bibliography

- 1. Parallel and Distributed Computing Practical activities- C. Ivan ,http://ftp.utcluj.ro/pub/users/civan/PDC
- Calcul paralel şi distribuit Lucrari practice, C. Ivan ,Editura UTPress , ISBN ISBN 978-973-662-283-0, 2007
- 3. Introduction to Parallel Computing, V.Kumar, A. Grama, A. Gupta, G. Karypis, Benjamin-Cummings, S 2,2008
- 4. *Programming on parallel machines* GPU, multicore and clusters,N. Mathloff, Universityof California Davis, 2016, http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

As Cluj software workforce market gets more sophisticated, having solid knowledge of how to develop parallel programs and mastering the distributed computing are qualities that software companies look for.

Activity type	10.1 Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course	Formal assessment to test theoretica knowledge and problem solving skills Attendance and activity.		Written exam.		40%
Applications	Formal assessment to test practical skills for designing parallel and distributed solutions and implementation. Attendance and activity.		Project, Research report and Homeworks during term.		60%

10.4 Minimum standard of performance

Design and implementation of parallel/distributed solutions using the theoretical models and tools (OpenMP, MPI, PP.Net, Sockets,RMI).

Pre-requisite for written exam: 6 mandatory lecture attendances.

Course responsible S.I.dr.ing. Anca Hangan

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	47.1

2. Data about the subject

2.1	Subject name				Oper	Operating Systems Design					
2.2	Subject a	area				Com	puter Science a	ind Informa	tion Te	echnology	
2.3	Course re	espons	ible/le	cturer		Asso	c.prof. dr. eng.	Adrian Col	eşa –	adrian.colesa@	cs.utcluj.ro
2.4	Teachers	in cha	rge of	applications		Asso	c.prof. dr. eng.	Adrian Col	eşa –	adrian.colesa@	cs.utcluj.ro
						Eng.	Radu Ciocas -	rciocas@b	itdefe	nder.com	
						Eng. Alexandru Gurzou – agurzou@bitdefender.com					
							Radu Portase -				
						Eng.	Alexandru Brîn	duşe – abr	induse	@bitdefender.c	com
2.5	Year of	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DS/OP
	study									category	

3. Estimated total time

Sem	Subject name	Lecture	App	licat	ions	Lecture	Арр	licati	ions	Individual study	TOTAL	Credit
		[hour	s/v	veek	.]	[h	ours	/ se	mes	ster]		
			S	Γ	Р		S	L	Р			
7	Operating Systems Design	2	-	2	1	28	-	28	14	85	155	6

3.1	Number of hours per week	5	3.2	of which, course	2	3.3	applications	3		
3.4	Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42		
Indiv	Individual study									
Man	ual, lecture material and notes, bibliog	graphy						40		
Supp	olementary study in the library, online	and in th	e field					0		
Prep	aration for seminars/laboratory works	, homew	ork, re	ports, portfolios, es	ssays	,		42		
Tuto	ring							1		
Exar	ns and tests							2		
Othe	er activities							0		
3.7	Total hours of individual study		8	5						
3.8 Total hours per semester 155										
3.9	3.9 Number of credit points 6									

4. Pre-requisites (where appropriate)

4	4.1	Curriculum	Operating Systems
4	1.2	Competence	C programming; Define and use basic OS concepts and system calls

5. Requirements (where appropriate)

Ī	5.1	For the course	Blackboard / Whiteboard, Beamer					
Г	5.2	For the applications	64-bit Computers with hardware virtualization support, 64-bit Linux and					
			Windows, VMware Workstation, Blackboard / Whiteboard					

C5: Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems

C5.1: Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator

C5.2: Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field

C5.3: Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems

C5.4: Proper utilization of the quality, safety and security standards in the field of information processing C5.5: Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

N/A

7. Discipline objectives (as results from the key competences gained)

	ooipiino objective	(do recalle from the key competence gamea)
7.1	General objective	Provide the students a clear understanding of an OS' internal structure, its main components' role and functionality, and the fundamental OS design and implementation strategies.
7.2	Specific objectives	 Let the students: Know and understand the possible OS internal structures. Know and understand the possible design and implementation alternatives of the main OS components, like the scheduler, process and thread manager, memory manager etc. Be able to analyze a specific OS design problems and find solutions to them. Be able to implement in C or assembly different OS components and system calls. Be able to work in team and manage relatively complex software projects.

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	General structure of an OS . Possible OS structures (monolithic, layered, micro-kernel, virtual machine, exokernel), its components, their functionality, role, interconnectivity.	(1) use beamer slides, combined with blackboard	
2	Process and thread management (1) . Scheduling algorithms. FCFS, SJF, Priority-based, Lottery. Priority inversion.	illustration;	
3	Process and thread management (2) . Scheduling algorithms: RR, MLFQ. Use cases: Solaris, Windows and Linux scheduling policies.	(2) interactions with students: ask	
4	Synchronization mechanisms (1) . General Design Principles. Hardware mechanisms used for implementation of higher-level synchronization mechanisms. Design and implementation of locks, semaphores, condition variables. Deadlock avoidance.	their opinion relative to the presented subject;	
5	Synchronization mechanisms (2) . Linux and Windows Use Cases. The synchronization mechanisms provided by Linux and Windows. The way they are implemented.	(3) give each class a short evaluation test; let students	
6	Synchronization mechanisms (3) . Deadlock. Deadlock avoidance, prevention and detection algorithms.	discuss and argue each other their	
7	Process management (1). Definition of the process concept, system call mechanism and possible implementations, handle (file descriptor) management, basic system calls for process management.	solution; give them the good solution and let them	
8	Process management (2) . Process memory address space structure, argument passing on the stack, process creation strategies, multithreading support.	evaluate their own one;	
9	Memory management (1). General aspects, design and implementation alternatives of different memory management techniques and	(4) propose 2-3 interesting study	

	mechanisms: contiguous allocation, segmentation, and paging.	cases of OSes to	
10	Memory management (2). Paging specific problems like page table	be prepared and	
	hierarchical structure, memory sharing, page tables for Intel architecture.	presented by	
11	Memory management (3) . Virtual memory's design and implementation	students;	
	aspects: swapping and lazy loading. Page replacement algorithms.		
12	File systems (1). General Design Aspects. Design and implementation	(5) students are	
	alternatives of file systems concepts (files, directories), storage space	invited to	
	management. Advantages and disadvantages.	collaborate in	
13	File systems (2) . Linux and Windows File Systems. Design and implementation of Ext2 and NTFS.	research projects.	
14	Security aspect. Subject review. Basic security aspects design.		
Diblia	Overview of all presented subjects.		
BIDIIO	graphy	tion Wiley 2005 ICDI	VI 070
	A. Silberschatz, G. Gagne, P. B. Galvin, <i>Operating Systems Concept</i> s, 7 th edi 0-471-69466-3	lion, whiey, 2005, ISBI	N 970-
2. /	A. Tanenbaum, A. Woodhull. <i>Operating Systems Design and Implementation</i> . 2006, ISBN: 0131429388	3 rd edition, Prentice H	Iall,
	Daniel Pierre Bovet, <i>Understanding Linux Kernel</i> , O'Reilly & Associates, 2001	. ISBN 0-596-00002-2	
	Applications (Laboratory, Projects)	Teaching methods	Notes
1	Introduction. Presentation of the lab / project OS (Pintos or HAL9000).	(1) students are	
2	OS Debugging. Techniques and tools to debug an OS.	presented a very	
3	Thread management. Support for managing multiple executions inside	brief overview of the	
	the OS kernel.	most important and	
4	Synchronization mechanisms. Implementation of locks, semaphores	difficult aspects of	
	and condition variables.	the working subject;	
5	Scheduling algorithms. Round-Robin, priority-based, multi-level	(2) students are	
	feedback queue (MLFQ).	given at the	
6	User application support (1). System call mechanism. Learn the way	beginning of each	
	the system calls are implemented and used. Basic system call handling in	class a short	
	the OS kernel		

evaluation quiz;

(3) students are

given a hands-on

tutorial to practice

to solve problems

given challenging

problems for extra

(4) students are

credit:

subject's aspects and

with working

Bibliography

9

10

11

12

13

14

the OS kernel.

Lab examination.

User

1. Lecture slides and laboratory text and support at http://moodle.cs.utcluj.ro/

Basic

memory

management.

support (2).

User application support (3). Multi-threaded application support.

Virtual memory (3). Swapping and page-replacement algorithms.

2. Pintos and HAL9000 manual.

application

Implementation of basic system calls.

Virtual memory (1). Lazy-loading mechanisms.

File system (1). Basic aspects of file implementation.

File system (2). Basic aspects of directory implementation.

Virtual memory (2). Memory-mapped files.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

OS knowledge is a fundamental requirement in the CS field. The OSD course presents techniques for hardware and software resources management, which are applicable on any complex management software application. Besides, it provides students detailed knowledge about modern OSes' internals, making them capable of developing more efficient applications. We follow the ACM curricula guide. OSD course's curriculum also maps the IT companies expectations, especially those dealing with direct access to OS services or developing kernel drivers or modules. Such companies are, for instance, system and data security and antivirus detection companies. Usually the teachers in charge of lab classes are former graduate students of our CS program with consistent experience in industry, in companies like those mentioned above. They are permanently consulted regarding the OS course curriculum and its applicability in real projects in industry.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the final

		methods	grade
Course	Students must understand fundamental OS structure and design alternatives and be able to explicitly describe it. They must also be able to apply their knowledge to give solutions to specific OS design problems.	Oral examination. Detailed discussion about design alternatives of different OS components.	0.67
Applications	Students must be able to develop different OS components writing code in C and assembly.	Lab: implementation of different problems in the lab OS. Project: presentation of design and implementation solutions	0.33

10.4 Minimum standard of performance

Students must attend minimum **9 lecture classes** to be allowed to take the exam in the regular exam session. Students must attend minimum **7 lecture classes** to be allowed to take the exam in any re-examination sessions. Less than 7 attended lecture classes leads to the interdiction to take any course re-examination in the university year the course is taught.

Students must attend minimum **12 lab classes** to be allowed to take the exam in the regular exam session. Students must attend minimum **10 lab classes** to be allowed to take the exam in any re-examination sessions. Less than 10 attended lab classes leads to the interdiction to take any lab re-examination in the university year the course is taught.

Students are allowed to take the final course examination only after passing the lab examination.

Be able to describe the internal aspects of the fundamental OS design principles, like locks, priority-based and RR scheduling, system calls, paging, virtual memory.

Be able to write functional C code that pass at least one test from the provided test set.

Course responsible Assoc.prof.dr.eng. Adrian Colesa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	47.2

2. Data about the subject

2.1	2.1 Subject name				User	User Interface Design					
2.2	2.2 Subject area				Com	Computer Science and Information Technology					
2.3	Course respor	nsible	e/lec	turer		Prof.	dr.eng. Gorga	an Dorian – d	orian.	gorgan@cs.utclu	j.ro
2.4	Teachers in ch	narge	e of a	applications		S.l.dr.eng. Ştefănuţ Teodor, teodor.stefanut@cs.utcluj.ro,					
						As.d	r.eng. Sabou	Adrian, adria	n.sabo	ou@cs.utcluj.ro	
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DS/OP
						category					

3. Estimated total time

Sem	Subject name	Lectur e	Apı	plica s	tion	Lectur Application e s		tion		TOTAL	Credit	
		[hours / week.]		[hours / semeste			ster]					
			S	L	Р		S	L	Р			
7	User Interface Design	2	•	2	1	28	-	2	1	85	155	6

3.1 Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4 Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Individual study							
Manual, lecture material and notes, bibliography							40
Supplementary study in the library, online and in the field							10
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							20
Tutoring							6
Exams and tests							9
Other activities							0

3.7	Total hours of individual study	85
3.8	Total hours per semester	155
3.9	Number of credit points	6

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer programming (C or Java) Elements of Computer Assisted Graphics Software Engineering
4.2	Competence	The fundamental methodology for the development of software applications

5. Requirements (where appropriate)

5.1	For the course	Projector, computer				
5.2	For the applications	Laboratory attendance is mandatory				
		Study of laboratory materials from the server				

C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (6 credite)
C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
C5.2 - Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of the application field
C5.3 - Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
C5.4 - Proper utilization of the quality, safety and security standards in the field of information processing C5.5 - Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Study and experiment the methodology of interactive software applications development. Study Human-Computer interaction techniques.
7.2	Specific objectives	 Apply the user centered software development methodology Study and experiment the techniques that are specific to the flexible methodology of the development of interactive applications and graphical user interfaces Implementation of new and efficient human-computer interaction techniques Usability evaluation in interactive applications

8. Contents

8.1. L	ecture (syllabus)	Teaching	Notes	
		methods		
1	Introduction. History	New multimedia		
2	User interface development concepts	teaching		
3	Input and output communication concepts	approaches will		
4	User oriented design methodology	be used in		
5	User interface design methodology	classes.	During the semester and before each exam there	
6	User interface usability	T		
7	User requirements definition	The course is		
8	Task description and analysis	interactive and includes		
9	User interface prototyping	demonstrations	are a few	
10	Cognitive walkthrough and heuristic evaluation	that exemplify	preparation	
11	Interaction styles and techniques	different user	hours	
12	Web technologies. Audio and video technologies	interaction	planned.	
13	Wireless technologies	techniques and		
14	User interface development environments	the software		
		development		
		methodology.		

Bibliography

- 8. Shneiderman B.: "Designing the User Interface. Strategies for Effective Human Computer Interaction", Addison-Wesley, 1992.
- 9. Galitz W.O.: "The Essential Guide to User Interface Design". John Wiley & Sons, 1997.

In virtual library

Course resources, http://cgis.utcluj.ro/teaching/

8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Best practice in UI development	Documentation	
2	Introduction into HTML	and examples	

3	Basic notions of CSS formatting	will be available	
4	User interaction through JavaScript	to the students,	
5	Intermediate knowledge assessment	prior to the	
6	Best practice in Mobile Applications development	laboratory	
7	Introduction in Android	classes, on a	
8	UI layout best practices. List controls.	dedicated	
9	UI elements for advanced user interactions	server. The	
10	Intermediate knowledge assessment	students will work	
11	Introduction in Windows Mobile	independently	
12	UI layout best practices. List controls.	but will also be	
13	UI elements for advanced user interaction	assisted by the	
14	Final knowledge assessment	teacher.	
Appl	ications (Projects)	Teaching methods	Notes
1	Duringst was poorly subject, another delegative whereas agreementing surject	methods	
	Project proposal: subject, methodology, phases, organization, project contents, project evaluation		
2	Project definition. Evaluation report		
3	Task description and analysis		Each student
4	Low fidelity prototyping, and scenarios		will have to
5	Cognitive walkthrough	Documentation	develop a
6	Heuristic evaluation	and examples	specific
7	Prototyping plan	will be available	project based on the
8	Prototyping plan Prototype codification	to the students	knowledge
9	User test cases	on a dedicated	acquired at
10	Prototype evaluation and evaluation reports	server.	the
11	Iterative enhancement of the prototype		laboratory
12	Final user interface development		hours.
13	Document writing		
14	Project presentation and evaluation		
Dili	· ·	<u> </u>	

Bibliography

1. Teodor Ștefănuţ, Dănuţ Mihon, Victor Bâcu, Dorian Gorgan. *Proiectarea interfeţelor utilizator - Îndrumător de laborator*, Editura U.T. PRESS Cluj-Napoca, ISBN 978-606-737-068-3, http://biblioteca.utcluj.ro/, 2015.

In virtual library

2. Course resources, http://cgis.utcluj.ro/teaching/

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline is integrated into the Computers and Information Technology domain. The content is classic, yet modern, and introduces to students the user centered methodology for the development of interactive software applications and graphical interfaces. The content of this discipline has been aligned with the information presented in similar disciplines from other major universities and companies from Romania, Europe and USA and has been evaluated by the authorized Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		The written exam evaluates the understanding of the information presented in classes and the ability to apply this knowledge.		Evaluation is performed through written examination.		60% (E)
Course activity		The activity in class evaluates the active involvement of the students in the teaching process and their participation to the discussions, debates and other class activities during the entire semester.		Evaluation is performed through a very short tests.		10% (AC)

Applications	Laboratory assessment evaluates the practical abilities obtained by the students. Through project assignments the students have the opportunity to develop their skill in applying the notions, concepts and methods presented in class.	Evaluation is performed through written exam and project assessment.	25% (C) 25% (P)						
10.4 Minimum	10.4 Minimum standard of performance								
Graduation requ	uirement: M≥5, final mark M=0.4*E+0.25*	C+0.25*P+0.1*AC	·						

Course responsible Prof.dr.eng. Dorian Gorgan

1. Data about the program of study

	1 0	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	48.1

2. Data about the subject

2.1	,				Patte	Pattern Recognition Systems					
2.2	Subject area				Com	Computer Science and Information Technology					
2.3	Course responsible/lecturer				Prof.	Prof. dr. eng. Sergiu Nedevschi – Sergiu.Nedevschi@cs.utcluj.ro					
2.4	Teachers in charge of applications					Conf. dr. eng. Florin Oniga, Sef lucrari Raluca Brehar, Sef lucrari					
Ion Giosan{ Florin.Oniga, Raluca.Bre					ca.Bre	har, Ion.Giosan}	@cs.utcluj.ro				
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DS/OP
										category	

3. Estimated total time

Sem	Subject name	Lectur e	Apı	plica s	tion	Lectur e	App	olicat s	tion	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semeste			ster]					
			S	L	Р		S	L	P			
7	Pattern Recognition Systems	2	•	2	1	28	-	28	14	85	155	6

3.1 Number of hours per week 5 3.2 of which, course 2 3.3 applications	3							
3.4 Total hours in the teaching plan 70 3.5 of which, course 28 3.6 applications	42							
Individual study								
Manual, lecture material and notes, bibliography								
Supplementary study in the library, online and in the field								
Preparation for seminars/laboratory works, homework, reports, portfolios, essays	28							
Tutoring	4							
Exams and tests								
Other activities								

3.7	Total hours of individual study	85
3.8	Total hours per semester	155
3.9	Number of credit points	6

4. Pre-requisites (where appropriate)

4.1	Curriculum	Image Processing					
4.2	Competence	Computer programming, Data structures and algorithms, Probability					
		Theory, Artificial Intelligence.					

5. Requirements (where appropriate)

5.1	For the course	Blackboard, video projector, computer
5.2	For the applications	Workstations, specific software (Visual Studio, Diblook, OpenCV,
		Matlab)

- C4 Improving the performances of the hardware, software and communication systems (2 credits)
- **C4.1 -** Identifying and describing the defining performance elements of hardware, software and communication systems
- **C4.2 -** Explaining the interaction of the factors that determine the performances of hardware, software and communication systems
- **C4.3 -** Applying fundamental methods and principles for increasing performance of hardware, software and communication systems
- **C4.4** Choosing criteria and methods for performance evaluation of hardware, software and communication systems
- **C4.5** Developing performance based professional solutions for hardware, software and communication systems
- C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits)
- **C5.1 -** Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- **C5.2 -** Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field
- **C5.3** Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
- C5.4 Adequate utilization of quality, safety and security standards in information processing
- **C5.5 -** Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
- **C6 –** Designing intelligent systems (2 credits)
- C6.1 Describing intelligent systems' components
- C6.2 Using domain-specific tools for explaining the operation of intelligent systems
- **C6.3 -** Applying fundamental methods and principles for specifying solutions for typical problems using intelligent systems
- **C6.4** Choosing criteria and methods for the evaluation of quality, performances and limitations of information systems
- **C6.5** Developing and implementing professional projects for intelligent systems

Cross competences N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Knowledge, understanding and use of concepts related to pattern recognition.
7.2	Specific objectives	Knowledge, understanding and use of model-based pattern recognition methods using statistical approaches, linear discriminant methods, support vectors, and ensemble of classifiers. Knowledge, understanding and use of the specific operations of a pattern recognition system: data preprocessing, dimensional reduction, relevant feature selection, building the prediction model, selection of the optimum model, performance analysis.

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction	Interactive	
2	Probability Review	teaching, using	
3	Bayesian Decision Theory 1	oral	
4	Bayesian Decision Theory 2	presentations	
5	Bayesian Decision Theory Case Studies	supported by	
6	Maximum Likelihood Estimation	multimedia tools,	N/A
7	Kernel Density Estimation	consultations,	
8	K Nearest Neighbors Estimation	involving	
9	Linear Discriminant Functions	students in	
10	Kernel Methods	research and	

11	Support Vector Machines	development	
12	Ensemble Methods	activities.	
13	Clustering methods		
14	Feature Selection and Performance Estimation		
	graphy		
	chard O. Duda, Peter E. Hart, David G. Stork, "Pattern Clasification", John	Wiley and Sons, 200)1.
	M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006		
	Theodoridis, K. Koutroumbas, "Pattern Recognition", 2-nd Edition, Academic		
	Murphy, "Machine Learning: A Probabilistic Perspective", The MIT Press, 20	_	
	Applications (Laboratory)	Teaching methods	Notes
1	Introduction		
2	Least Mean Squares Line Fitting		
3	RANSAC – fitting a line to a set of points	Presentation	
4	Hough Transform for line detection	using the	
5	Distance Transform (DT). Pattern Matching using DT	blackboard and	
6	Probability Density Estimation	multimedia	
7	K-Means Clustering	tools.	
8	Principal Component Analysis		
9	K-Nearest Neighbor Classifier	Experiments	
10	Naïve Bayes Classifier: Simple Digit Recognition Application	and	
11	Linear classifiers. Perceptron algorithm	implementation	
12	Adabost with Decision Stumps	using specific	N/A
13	Support Vector Machine	software tools	
14	Lab Assessment	(MS Visual	
Appli	cations - Projects	Studio, Diblook)	
1	Topic assignment (week 1, 2)	Evaluation of the	
2	Analyzes, specification and design (week 3,4)	Evaluation of the	
3	Presentation of the approach (week 5,6)	design and implementation	
4	Implementation (week 6,7,8,9,10); Intermediate presentation (week 9,10)	phases.	
5	Evaluation and optimization (week 11,12)	μπαοσο.	
6	Report elaboration (week 12,13)		
7	Final Presentation (week 13,14)		
Biblio	ography		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

S. Nedevschi, "Lecture Notes", ftp.utcluj.ro/pub/users/nedevschi/SRF/

The subject is part of the Computer Science and Information Technology curriculum, its contents combining fundamental and practical aspects used in the field of pattern recognition. The subject content is correlated with the specific curricula of other Universities, in Romania and abroad, and is evaluated by government agencies (CNEAA and ARACIS). The subject's activities are meant to make the students familiar with the applications and the research directions of the image processing field, helped by the internationally renowned experience of the teachers.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	Weight in the final grade
Course		Testing the theoretical knowledge acquired, and the practical abilities of problem solving.		Written exam	50 %
Applications		Testing the practical abilities of designing and implementing solutions to specific problems. Attendance and activity.		Lab assessment, project assessment	50 %

10.4 Minimum standard of performance

Modeling and implementation of solutions to specific engineering problems, using the domain's formal apparatus.

Course responsible Prof. dr. eng. Sergiu Nedevschi

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4	Field of study	Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	48.2				

2.Data about the subject

2.1	Subject name				Translators Design							
2.2	.2 Subject area					Com	Computer Science and Information Technology					
2.3	Course respor	nsible	e/lec	turer		Asso	Assoc.prof. dr. eng. Emil Şt. Chifu – emil.chifu@cs.utcluj.ro					
2.4	Teachers in ch	narge	of a	applications		Ing.	Ing. Mihai Anton Cerghizan					
2.5	Year of study	IV	2.6	Semester	7	2.7 Assessment exam 2.8 Subject D				DS/OP		
										category		

3. Estimated total time

Sem	Subject name	Lectur e	Apı	plica s	tion	Lectur e	App	licat s	ion	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]			ster]					
			S	L	Р		S	L	Р			
7	Translators Design	2	-	2	1	28	-	28	14	85	155	6

3.1 Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4 Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Individual study							Hours
Manual, lecture material and notes, bibliog	graphy						30
Supplementary study in the library, online and in the field							
Preparation for seminars/laboratory works	, homew	ork, re	eports, portfolios, e	ssays	;		27
Tutoring							10
Exams and tests							3
Other activities							0
2.7 Total hours of individual study		95					•

3.7	Total hours of individual study	85
3.8	Total hours per semester	155
3.9	Number of credit points	6

4. Pre-requisites (where appropriate)

		1 /
4.1	Curriculum	Formal Languages and Translators, Computer Programming, Data
		Structures and Algorithms
4.2	Competence	- Basic knowledge of programming and data structures (preferably in the
		C and Java languages)
		- Concepts of generative grammars and formal languages
		- To know the basic principles in the design of interpretors and
		translators for languages artificial
		- Basic knowledge of relational databases and web applications

5. Requirements (where appropriate)

Ī	5.1	For the course	N/A
I	5.2	For the applications	Computers, specific software

- C4 Improving the performances of the hardware, software and communication systems (2 credits)
- **C4.1** Identifying and describing the defining elements of the performances of the hardware, software and communication systems
- **C4.2** Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
- **C4.3** Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems
- **C4.4** Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
- **C4.5** Developing professional solutions for hardware, software and communication systems based on performance optimization
- **C5 -** Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits)
- **C5.1** Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- **C5.2** Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field
- C5.3 Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
- C5.4 Proper utilization of the quality, safety and security standards in the field of information processing
- **C5.5** Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
- C6 Designing intelligent systems (1 credit)
- **C6.1** Describing the components of intelligent systems
- C6.2 Using domain-specific tools for explaining and understanding the functioning of intelligent systems
- C6.3 Applying the fundamental methods and principles
- for specifying solutions for typical problems using intelligent systems
- **C6.4** Choosing the criteria and evaluation methods for the quality, performances and limitations of intelligent systems
- **C6.5** Developing and implementing professional projects for intelligent systems

Cross competences N/A

7. Discipline objectives (as results from the key competences gained)

		recard from the key competence games,
7.1	General objective	To know the phases of programming language translators: lexical analysis, syntactic analysis, and code generation.
		To master the tree structure representation of XML documents.
7.2	Specific objectives	To know the classes of languages for which efficient translators and interpreters can be implemented.
		To know the rules for processing typical statements for interpreters.
		To understand the difference between structure and presentation of documents.
		By using the Java language, to implement parsers of type SAX and DOM for XML documents containing DTD validation information.
		By using the Java language, to implement XML document transformators, based on XSLT transformations.

8.1. L	ecture (syllabus)	Teaching	Notes
		methods	
1	Descriptive tools: extended Backus-Naur form.	- The main ideas	N/A

2	Regular grammars and finite automata: finite automata, state diagrams	with multimedia
	and regular expressions.	tehniques
3	Context-free grammars and pushdown auromata: examples.	- Details and examples at the
4	Lexical analysis: modules and interfaces (decomposition of the grammar,	blackboard, in
	lexical analyzer interface), construction of the lexical analyzer (state	interaction with
	diagrams, reserved words method).	the students
5	LL parsers: the LL(1) parsing algorithm for extended BNF grammars.	- There are - consultation
6	LL parsers: computation of FIRST and FOLLOW sets.	hours
7	LL parsers: examples of recursive-descent applications.	- Students are
8	Theoretical results concerning the LL(k) and LR(k) grammars.	invited to
9	LR parsers: LR(0) states, SLR(1) grammars.	collaborate in research projects
10	LR parsers: LALR(1) grammars.	- research projects
11	LR parsers: the LALR(1) algorithm.	
12	LR parsers: shift-reduce transitions, chain production elimination.]
13	LR parsers: LR table compression.	1
14	Basic concepts of attribute grammars.]
D.1. II.		•

Bibliography

- 10. W.M. Waite and G. Goos, Compiler Construction, Springer-Verlag, 1984.
- 11. I.A. Leţia and E.Şt. Chifu, Limbaje formale şi translatoare, Ed. Casa cărţii de ştiinţă, 1998.
- 12. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley, 1986. 8.2. Applications (Laboratory, Projects)

8.2.	Applications (Laboratory, Projects)	Teaching methods	Notes
L1	W3C XML Recommendation version 1.0.		
L2	Parsing XML documents ("well-formed").		
L3	XML document validation using DTD.		
L4	XML document validation using XSD.	Brief	
L5	W3C XPath Recommendation version 1.0.	presentation at	
L6	W3C XSLT Recommendation version 1.0.	the blackboard,	
L7	XSL-FO (XML Stylesheet Language - Formatting Objects) 1.1.	examples and	
L8	XML usage for storing Microsoft Office 2007/2010 documents - Apache	exercises	
	POI/XSSF 3.13.	implemented	
L9	XML Data Binding using JAXB 2.0.	and tested on	
L10	W3C XQuery Recommendation 1.0, XPath & XSLT 2.0.	the computers,	
L11	XML document storage in databases.	followed by homework for	
L12	eXist-db XML native DBMS 2.2.	each topic	
L13	XQuery 3.0 and Update extensions in eXist-db		
L14	XRX (XForms + REST(ful) + XQuery) Web Application Architecture &		
	Development in eXist-db.		
P1	Building recursive-descent parsers from extended BNF grammars.	D	
P2	Recursive-descent (RD) applications:.expression evaluator.	Brief presentation at	
P3	RD applications: interpreter for a language operating on binary trees.	the blackboard,	
P4	RD applications: interpreter for a language operating on lists.	implementing	
P5	RD applications: interpreter for a language operating on matrices.	and testing the	
P6	RD applications: code generator for an imperative language.	assignment on the computer	
P 7	RD test.	- the computer	

Bibliography

- 1. W3C Recommendations (i.e. Standards) appropriate for each Topic.
- 2. Teach Yourself XML in 21 days, Steven Holzner, SAMS Publishing, 2004.
- 3. XML Pocket Reference, 3rd Edition, Simon St. Laurent, Michael Fitzgerald, O'Reilly Media, 2005.
- 4. I.A. Leţia, D. Marcu, B. Ungureanu, Procesoare de limbaje. Îndrumător de laborator, Universitatea Tehnică din Cluj-Napoca, 1995.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is a specialty course in Computer Science, its syllabus being both classical and modern. It teaches the students with the principles of efficient design and implementation of interpreters and translators for artificial languages. The syllabus of the course has been discussed with other important universities and companies from Romania, Europe, and USA. This syllabus has been evaluated by Romanian governmental agencies (CNEAA and ARAIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade			
Course		- Problem-solving skills - Attendance, Activity		- Written exam		44%			
Applications		- Problem-solving skills - Attendance, Activity		 Assessment of the XML activity, homework, and written exam Assessment of the RD activity and test 		35% 21%			
	10.4 Minimum standard of performance								
Modelling typi	Modelling typical engineering problems using the domain specific formal apparatus								

Assoc.prof.dr.eng. Emil Chifu

Obtaining final grade 5

Course responsible

1. Data about the program of study

	<u> </u>	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	49.1

2.Data about the subject

				,							
2.1	Subject name				Mark	Marketing					
2.2	Subject area					Com	puter Science	and Informat	ion T	echnology	
2.3	Course respon	nsible	e/lec	turer		Lect	or dr. Veronica	a Maier – <u>vero</u>	nica.	maier@enm.utd	cluj.ro
2.4	Teachers in cl	harge	e of a	applications							
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	Colloquium	2.8	Subject	DC/OP
										category	

3. Estimated total time

Sem	Subject name	Lectur Application e		Lectur e	Application			TOTAL	Credit			
•		b		3		b		3		Study	TOTAL	Credit
		[hour	s/v	veek	.]	[h	ours	/se	mes	ster]		
			S	Ĺ	Р		S	L	Р			
7	Marketing	2	-	-	-	28			-	48	76	3

3.1	Number of hours per week	2	3.2	of which, course	2	3.3	application	-
							S	
3.4	Total hours in the teaching plan	28	3.5	of which, course	28	3.6	application	-
							S	
Individual study								Hours
Manual, lecture material and notes, bibliography							14	
Sup	olementary study in the library, online	and in th	ne field	1				7
Prep	paration for seminars/laboratory works	, homew	ork, re	eports, portfolios, es	says			14
Tutoring							9	
Exams and tests							4	
Other activities						-		
0.7 Tarabas as (C. P. 1) 1.0								

3.7	3.7 Total hours of individual study					
3.8	Total hours per semester	76				
3.9	Number of credit points	3				

4. Pre-requisites (where appropriate)

		1 /
4.1	Curriculum	Not the case
4.2	Competence	Not the case

5. Requirements (where appropriate)

5.1	For the course	The existence of multimedia equipment
5.2	For the applications	Not the case

C5 – Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits)
C5.1 – Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator
C5.2 – Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of the application field
C5.3 - Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
C5.4 – Adequate utilization of quality, safety and security standards in information processing
C5.5 – Realization of a project including problem identification and analysis, design and development, while proving the understanding of the basic quality needs and requirements

CT1 – Honorable, responsible, ethical behavior, in the spirit of the law, in order to ensure the professional reputation (1 credit)

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Understand, assimilate and use of basic marketing concepts, principles and techniques
7.2	Specific objectives	Understand the marketing orientation, the components of the marketing mix, the methods and techniques for collecting and processing marketing data, the strategic analysis determining the competitive advantage, the market segmentation and the buying decision criteria.

8.1. L	Lecture (syllabus)	Teaching methods	Notes
1	Marketing role in big and small companies and in society: to contribute to company prosperity through creating a high value for the customers; to make the company responsible on the long range in front of community, society and environment. Marketing specific activities		2h
2	Marketing concepts (philosophies) in contemporary organizations: Volume? Quality? Sales? Customer satisfaction?		2h
3	Marketing environment analysis. Micro and macro environment: suppliers, interest groups, customers, economic, demographic, technological, natural, legal and cultural environment	multimedia	2h
4	Marketing research: research plan, data collection; data analysis quantitative and qualitative techniques; experiments; research report. Marketing information systems	presentation, interactivity by exemplifying the	2h
5	Marketing strategic planning: creating and maintaining the balance between objectives, resources and market opportunities. Methods of strategic analysis.	presented concepts, using the questions-	2h
6	Designing the strategic plan at four levels: company, divisions, strategic units and brands	answer method during the	2h
7	Consumer behavior analysis: patterns of behavior	course, discussing case	2h
8	Buying decision process	studies, playing	2h
9	Market segmentation. Criteria and methods of market segmentation	thematic strategy	2h
10	Product policy. Product life cycle. Researching and developing new products	game, interactive lectures	2h
11	Product strategies for the life cycle stages. Positioning strategies		2h
12	Pricing. Pricing policy objectives. Pricing and legal constraints. Pricing policies: market penetration and market skimming		2h
13	Product distribution. Choosing the distribution channels. Managing and controlling the distribution channels		2h

14	Marketing communication. Communication process. Marketing		2h			
	communication mix: advertising,		211			
Biblio	graphy					
1	. D. Catana, Gh. A. Catana, Fundamentals of Marketing, UTPRES, 2009					
2	2. Gh. A. Catana, A. Dobra Constantinescu, Marketing in powerpoint, UTPRES, 2004					
3	3. Gheorghe Alexandru Catană, Marketing: filozofia succesului de piață,vol. I, Editura Dacia, Cluj-					
	Napoca 2003					
Virtu	al materials					
1. D.	1. D. Catana, Gh. A. Catana, Marketing, 2010 www.marketing.utcluj.ro					
8.2. /	8.2. Applications (Seminars, Laboratory, Projects) Teaching methods Notes					
1	Not the case	-	-			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

In order to provide the content for the lecture and establish the method of the teaching / learning process the professor organizes meetings with marketers, who speak to students about the needs and expectations of employers in the area.

10. Evaluation

Bibliography

Activity type	10.1	Assessment criteria		Assessment methods	10.3	Weight in the final grade
Course		The students answer to open ended and closed questions; involvement during the course by preparing and presenting teamwork papers.		Written exam		100%
Applications		Not the case		-		-
10.4 Minimum standard of performance						
Requirement for the credits: N>5						

Course responsible Assist. Prof. Veronica Maier, PhD

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	49.2

2. Data about the subject

2.1	Subject name			Personal and professional development								
2.2	Subject area			Computer Science and Information Technology								
2.3	Course responsible/lecturer				Dipl.	Dipl. Psy. Dorin Stanciu PhD, Lecturer						
						(ionut.stanciu@dppd.utcluj.ro)						
2.4	4 Teachers in charge of aapplications				S	-						
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	Colloquium	2.8	Subject	DC/OP	
										category		

3. Estimated total time

Sem	Subject name	Lectur	Apı	olica	tion	Lectur	App	licat	tion	Individual		
-		e s		е	S		study	TOTAL	Credit			
		[hours / week.]			[hours / semester]				ster]			
			S	L	Р		S	L	Р			
7	Personal and professional development	2	•	ı	-	28	•	-	-	48	76	3

3.1	Number of hours per week	2	3.2	of which, course	2	3.3	application	-
							S	
3.4	Total hours in the teaching plan	28	3.5	of which, course	28	3.6	application	-
							S	
Individual study							Hours	
Manual, lecture material and notes, bibliography						16		
Sup	olementary study in the library, online	and in th	e field	1				14
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, ess	ays			14
Tuto	ring							-
Exams and tests							4	
Other activities						-		
3.7	Total hours of individual study		48					

3.7	I otal hours of individual study	48
3.8	Total hours per semester	76
3.9	Number of credit points	3

4. Pre-requisites (where appropriate)

4.1	Curriculum	-					
4.2	Competence	Baccalaureate level of instruction and general knowledge					
		Beginner literacy with desktop applications, including Internet utilization					

5. Requirements (where appropriate)

		, ,
5.1	For the course	Auditorium or large lecture room. Audio-video installation for on-screen
		presentations (with room speakers). WiFi or cable Internet connectivity.
5.2	For the applications	Auditorium or large lecture room. Audio-video installation for on-screen presentations (with room speakers). WiFi or cable Internet connectivity.
		Writing board (classical or interactive) / Flip chart

6. Specific competences

	·						
etences	C5 - Design, lifecycle management, integration and integrity of hardware, software and communication systems (2 credits) C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator						
omp	C5.2 - Using interdisciplinary knowledge for adapting an information system to application domain requirements						
onal c	C5.3 - Using fundamental principles and methods for security, reliability and usability assurance of computing systems						
ofessi	C5.4 - Adequate utilization of quality, safety and security standards in information processing C5.5 - Realization of a project including problem identification and analysis, design and development, while proving the understanding of the basic quality needs and requirements						
ss	TC1 - Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation (1 credit)						
Cross							

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	To provide the course graduate with a set of competencies, skills and level of knowledge about him/herself which allows the formation of a competitive advantage and to provide to course graduate with a better understanding of his/her current academic status and curriculum
7.2	Specific objectives	To facilitate domain-specific learning and knowledge acquisition by providing a larger perspective on personal and professional development; To enhance personal determination and academic engagement as a basis for future competitiveness; To allow the course graduate to acquire specific tools and skills needed for personal and professional assessment, engagement, planning, organizing, expression, and networking.

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Key-concepts of personal and professional development. Self-concepts, qualities and virtues, self-awareness and self-knowledge (self-assessment versus external evaluations)	Interactive lectures: - Exposition	
2	Motivation and self-determination. Goals, objectives, interests, needs, desires, ideals, aspirations, expectations and incentives.	DiscourseDebating	
3	Learning and learning styles. Self-directed learning, adult learning and continuous learning (lifelong learning)	- Case studies - Problem-	
4	Social modelling and key-persons/models. The basics of social learning and the significant others	solving - Heuristic	
5	Rationality, control, self-regulation and decision making. Processes, strategies and decision making tools	conversations Role playing	
6	Critical thinking and scientific reasoning. Cognitive biases, logical fallacies and cognitive distortions		
7	Assertive communication, persuasion and negotiation]	
8	Significant personal objectives: Qualities and virtues		
9	Significant personal and professional objectives: Health, safety, fulfilment, satisfaction and happiness		
10	Tools, means and methods for productivity enhancement: Strategic planning, Decision-making, Information management		
11	Tools, means and methods for productivity enhancement: Organization, scheduling, planning and budget management]	
12	Tools, means and methods for productivity enhancement: CV building		

	(principles, alternatives, instruments)	
13	Tools, means and methods for productivity enhancement: Social networking, Professional networking (virtual dedicated networks and	
	communities)	
14	Personal and professional development plans. Design and presentation	

Bibliography

Study materials: Course synthesis, Lecture presentations, additional multimedia presentations)

Aggarwal, R. S. (2000). A Modern Approach to Vernbal & Non Verbal Reasoning: S.Chand.

Andrews, K. R. (1971). The concept of corporate strategy: Dow Jones-Irwin.

Ariely, D. (2009). *Predictably Irrational: The Hidden Forces that Shape Our Decisions*: HarperCollins Publishers.

Aspinwall, L. G., & Staudinger, U. M. (2003). A Psychology of Human Strengths: Fundamental Questions and Future Directions for a Positive Psychology: American Psychological Association.

Bercovitch, J., Kremenyuk, V., & Zartman, I. W. (2008). *The SAGE Handbook of Conflict Resolution*: SAGE Publications.

Bishop, S. (2013). Develop Your Assertiveness: Kogan Page.

Bolt, M. (2004). Pursuing Human Strengths: A Positive Psychology Guide: Worth Publishers.

Cameron, N., & Bogin, B. (2012). Human Growth and Development. Academic Press.

Caputi, P., Viney, L. L., Walker, B. M., & Crittenden, N. (2011). Personal Construct Methodology: Wiley.

Cava, R. (2004). Dealing With Difficult People: How to Deal With Nasty Customers, Demanding Bosses and Annoying Co-Workers: Firefly Books, Limited.

Chamorro-Premuzic, T., & Furnham, A. (2005). Personality and Intellectual Competence: Taylor & Francis.

Clark, K. S., Murphy, M. M., & Banas, S. L. (2009). Handling Peer Pressure: Facts On File, Incorporated.

Deutsch, M., Coleman, P. T., & Marcus, E. C. (2011). *The Handbook of Conflict Resolution: Theory and Practice*: Wiley.

Dreher, J. C., & Tremblay, L. (2009). Handbook of Reward and Decision Making: Elsevier Science.

Dunne, G. (2003). Anger and Conflict Management: Personal Handbook: Personhood Press.

Fells, R. (2012). Effective Negotiation: From Research to Results: Cambridge University Press.

Freeley, A. J. (2012). Argumentation and Debate, 13rd ed: Wadsworth/Cengage Learning.

Gigerenzer, G. (2000). Adaptive Thinking: Rationality in the Real World: Oxford University Press, USA.

Gilbert, D. (2006). Stumbling on Happiness: Knopf Doubleday Publishing Group.

Gilovich, T. (2008). How We Know What Isn't So: Free Press.

Glickman, R. (2002). Optimal Thinking: How to Be Your Best Self: Wiley.

Hammond, J. S., Keeney, R. L., & Raiffa, H. (1999). *Smart Choices: A Practical Guide to Making Better Decisions*: Harvard Business School Press.

Haslam, N. (2007). Introduction to Personality and Intelligence: SAGE Publications.

Hunter, D. (2013). A Practical Guide to Critical Thinking: Deciding What to Do and Believe: Wiley.

Johnson, G., & Whittington, R. (2009). Fundamentals of Strategy: Pearson Education, Limited.

Kahneman, D. (2011). Thinking, Fast and Slow: Farrar, Straus and Giroux.

Kuhn, D. (2009). Education for Thinking: Harvard University Press.

Larson, C. U. (2009). Persuasion and Responsibility: Reception and Responsibility: Cengage Learning.

Lau, J. Y. F. (2011). An introduction to critical thinking and creativity: Think more, think better. Hoboken, N.J.: Wiley.

Lilley, R. (2013). Dealing with Difficult People: Kogan Page.

Lopez, S. J. (2008). Positive Psychology: Discovering human strengths: Praeger.

Macnamara, J. (1986). A Border Dispute: The Place of Logic in Psychology: A Bradford Book.

MTD Training. (2010). Dealing with Conflict and Complaints: MTD Training & Ventus Publishing ApS.

Mynatt, J. (2009). Encyclopedia of Management. Gale.

Narvaez, D., & Lapsley, D. K. (2009). *Personality, Identity, and Character: Explorations in Moral Psychology*: Cambridge University Press.

Oliver, D. (2010). How to Negotiate Effectively: Kogan Page.

Peterson, C., & Seligman, M. E. P. (2004). *Character Strengths and Virtues: A Handbook and Classification*: Oxford University Press, USA.

Raiffa, H., Richardson, J., & Metcalfe, D. (2002). *Negotiation Analysis: The Science and Art of Collaborative Decision Making*: Belknap Press of Harvard University Press.

Rechner, A. (2009). The in Crowd: Dealing with Peer Pressure: Compass Point Books.

Schick, T., & Vaughn, L. (2013). How to Think About Weird Things: Critical Thinking for a New Age: McGraw-Hill Education.

Seligman, M. E. (2011). *Learned Optimism: How to Change Your Mind and Your Life*: Knopf Doubleday Publishing Group.

Smith, J. C. (2011). Pseudoscience and Extraordinary Claims of the Paranormal: A Critical Thinker's Toolkit: Wiley.

Staley, C. C. (2007). Focus on college success. Boston, MA: Wadsworth Cengage Learning.

Stanciu, I. D. (2013). Raţionalitate şi control în autoreglarea învățării la studenţi. Modelare conceptuală şi intervenţii experimentale de validare. Cluj-Napoca: Presa Universitară Clujeană.

Stanovich, K. E. (2009). Decision making and rationality in the modern world: Oxford University Press.

Sternberg, R. J., & Zhang, L. (2001). *Perspectives on Thinking, Learning, and Cognitive Styles*: Taylor & Francis.

Tavris, C., & Aronson, E. (2008). *Mistakes Were Made (But Not by Me): Why We Justify Foolish Beliefs, Bad Decisions, and Hurtful Acts*: Houghton Mifflin Harcourt.

van den Brink-Budgen, R. (2000). *Critical Thinking for Students: Learn the Skills of Critical Assessment and Effective Argument*: How To Books.

Zhang, L., Sternberg, R. J., & Rayner, S. (2012). *Handbook of Intellectual Styles: Preferences in Cognition, Learning, and Thinking*: Springer Publishing Company.

8.2.	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1	N/A		
Biblio	ography		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

By completing this course, the course graduate is expected to have acquired a series of specific and general declarative and procedural knowledge, as well as have built a series of competencies, which, in their togetherness contribute to an increased capacity to find employment, communicate professionally and informally, collaborate and work closely with other professionals and non-professional, and an increased ability to promote and capitalize upon personal and professional traits and activities.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final
				methods	3	grade
Course		Standardized written test with		Written test		60%
		multiple choice questions.		Duration: 1 hr.		
Applications		Collaborative and individual semester projects. Collaborative and individual homework. Assessment criteria include: accuracy/precision, completeness, fluency, and relevance		Individual portfolio		40%

10.4 Minimum standard of performance

The total weighed score exceeds the equivalent of 5/10 of the final grade. Each assessment exceeds 50% of the allotted grading.

Course responsible DPsy. Dorin Stanciu PhD, Lecturer