	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	23.

2. Data about the subject

2.1	.1 Subject name				Syst	Systems Theory					
2.2	2.2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Asso	Assoc. prof. dr. eng. Paula Raica – Paula.Raica@aut.utcluj.ro					
2.4	Teachers in cl	harge	e of a	applications		Conf	Conf.dr.ing. Paula Raica, Sl.dr.ing. Iulia Clitan, Asist.dr.ing.				
						Alex	andru Codrea	n, Ing. Zoltar	n Nagy	1	
2.5	Year of study	II	2.6	Semester	4	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur Application e s		Lectur e	Application s		Individual study	TOTAL	Credit			
		[hours / week.]		[hours / semester]			ster]					
			S	L	Ρ		S	L	Ρ			
4	Systems Theory	2	-	2	-	28	-	28	-	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study								Hours
Man	ual, lecture material and notes, bibliog	graphy						20
Supplementary study in the library, online and in the field							5	
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, e	ssays	;		20
Tuto	ring							
Exams and tests							3	
Other activities								
3.7	Total hours of individual study		48					

3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Mathematical Analysis_II (Integral calculus and differential equations,
		Linear algebra
4.2	Competence	Differential equations, complex numbers, Laplace transform, linear
		algebra

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Reading and understanding of the lecture notes.

Professional competences	 C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (4 credits) C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
Cross competences	N/A

7.1	General objective	The general objective of the course is to introduce the fundamental principles of linear system modeling, analysis and feedback control and to evaluate feedback control systems with desired behavior.
7.2	Specific objectives	The specific objectives are to acquire the knowledge and techniques related to: - mathematical system modeling (differential equations, input-output representation as transfer functions, block diagrams) for simple applications - linear system analysis (assessment of stability and performance properties of linear systems) in time and frequency domains - design of feedback controllers such as PID, lead and lag compensators for linear systems using s-domain techniques - linear sampled-data system representation and analysis

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction to systems theory and control engineering. Intoduction to		
	system modeling. Linear approximation.	Lecture, visual	
2	Input/output models. System response. State-space models.	presentations,	N/A
3	Conversion between transfer function and state space.	demonstrations	
	Block diagrams.		
4	Linear system analysis. 1 st and 2 nd order systems. Steady-state error.	1	
5	Higher order systems. Dominant poles. Stability of linear continuous		
	systems.		
6	System analysis using root locus.	1	
7	Frequency response. Bode diagrams.		
8	Controller design. Lead-lag compensation.	1	
9	System analysis. Applications. Midterm exam.		
10	PID – the basic technique for feedback control.		
11	Controlability. Observability. State feedback.	1	
12	Sampled-data systems.		
13	Digital control systems	7	
14	Controller design – aplications. Sampled-data systems – applications.	7	
Biblio	graphy		
1. R.	C. Dorf, R. Bishop, "Modern Control Systems", Addison-Wesley, 2004;		
2. K.	Ogata, "Modern Control Engineering", Prentice Hall, 1990.		
3. K	. Dutton, S. Thompson, B. Barraclough, "The Art of Control Engineering", Ad	dison-Wesley, 1997	
4. W	illiam S. Levine (editor), "The Control Handbook", CRC Press and IEEE Pres	ss, 1996	
5. Le	cture notes available on the course webpage: <u>http://rocon.utcluj.ro/st</u>		
8.2. /	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1	Introduction to Matlab Simulation of dynamical systems	Class	4 hours

2	Linear approximation of differential equations. Transfer functions. System	discussion,	4 hours				
	response.	Supervised					
3	Block diagram models. 1st and 2nd order system analysis. Steady-state	exercise solving	4 hours				
	error	using Matlab					
4	System stability. Root locus	Miniprojects – individul student reports	4 hours				
5	Frequency response. Bode diagrams		4 hours				
6	Lead-lag compensation. PID controllers		4 hours				
7	State feedback. Sampled-data systems.	1	4 hours				
Biblic	Bibliography						
1. Pa	1. Paula Raica, "Control Engineering. Exercises", Editura Mediamira, 2001						
2. Le	2. Lecture notes available on the course webpage: http://rocon.utcluj.ro/st						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course content combines theoretical knowledge with applications and focuses on the formulation and solution of specific problems that may occur in various engineering fields. Application of the control theory concepts are specific to most of the engineering disciplines. The course level is introductory and the intent is to motivate and prepare students for further study in related areas and to conduct projects in real-life applications.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade			
Course		Ability to solve exercises related to linear system modeling and analysis		Midterm exam – writen examination		40%			
		Ability to solve exercises related to system design and analysis of sampled-data systems		Final exam - writen examination		60%			
Applications		Answer simple questions from the topic of the lab applications		Lab tests (optional)		30% (optional, but may contribute to a higher grade)			
10.4 Minimum standard of performance									
Solution of sir	Solution of simple exercises applying the knowledge and techniques presented in the course.								
40% Midterm	grade	e + 60%Final grade + 30%Lab grad	e > 5						

Course responsible Conf.dr.ing. Paula Raica

	1. Data about the program of stu	lay
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	24.

1. Data about the program of study

2. Data about the subject

2.1	Subject name				Com	Computer Architecture					
2.2	2.2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				S.I.d	S.I.dr.ing. Mihai Negru – Mihai.Negru@cs.utcluj.ro					
2.4	4 Teachers in charge of applications				Conf	Conf.dr. ing. Florin Oniga, S.I.dr.ing. Mihai Negru, { Florin.Oniga,					
						Mihai.Negru }@cs.utcluj.ro					
2.5	Year of study	II	2.6	Semester	4	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	Ар	plica s	tion	Lectur Ap e		olicat s	ion	Individual study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Ρ		S	L	Ρ			
4	Computer Architecture	2	-	2	-	28	-	28	-	74	130	5

3.1	Number of hours per week43.2of which, course23.3applications						2	
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Indiv	idual study							Hours
Manu	ual, lecture material and notes, bibliog	Iraphy						28
Supp	elementary study in the library, online	and in th	e fielc					14
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							28	
Tuto	ring							0
Exams and tests							4	
Other activities							0	
3.7	7 Total hours of individual study 74							
3.8 Total hours per semester 130								

3.9 Number of credit points 4. Pre-requisites (where appropriate)

	4. Fie-iequisites (where a	ppropriate)
4.1	Curriculum	1. Logic design
		2. Digital system design
4.2	Competence	Ability to design digital circuits and to implement them in VHDL

5

5. Requirements (where appropriate)

5.1	For the course	blackboard, video projector, laptop
5.2	For the applications	desktop/laptop computer, Xilinx ISE / VIVADO, FPGA development
		boards

6. Specific competences

Professional competences	 C2 – Designing hardware, software and communication components (5 credits) C2.1 – Describing the structure and functioning of computational, communication and software components and systems C2.2 – Explaining the role, interaction and functioning of hardware, software and communication components C2.3 – Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies C2.4 – Evaluating the functional and non-functional characteristics of the computing systems using specific metrics C2.5 – Implementing hardware, software and communication systems
Cross competenc	N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Knowing and understanding the concepts of organization and functioning for central processing units, memories, input/output, and using these concepts for design.
7.2	Specific objectives	 Applying methods for representation and design at system level for digital circuits Instruction Set Architecture (ISA) specification Writing simple programs in assembly languages and machine code Specification, design, implementation, and testing of Central Processing Units (CPU) – micro architecture – data path – command units Understanding memory organization and I/O operations Understanding modern trends in computer architectures

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes	
1	Introduction			
2	High-Level Synthesis			
3	Instruction Set Architecture (ISA)	Oral presentation		
4	CPU Design - Single Cycle CPU	backed up by		
5	Computer Arithmetic and Simple Arithmetic Logic Units	multimedia		
6	CPU Design - Multi Cycle CPU Data path	equipment, interactive		
7	CPU Design - Multi Cycle CPU Control	communication,		
8	CPU Design – Pipelined CPU	blackboard problem		
9	Advanced Pipelining – Static and Dynamic Scheduling of the	solving		
	Execution			
10	Branch Prediction			
11	Superscalar Architectures			
12	Memory			
13	I/O and Interconnection Structures			
14	Problem solving			

Bibliography

1. D. A. Patterson, J. L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface",5th edition, ed. Morgan–Kaufmann, 2013.

- 2. D. A. Patterson and J. L. Hennessy, "Computer Organization and Design: A Quantitative Approach", 5th edition, ed. Morgan-Kaufmann, 2011.
- Vincent P. Heuring, et al., "Computer Systems Design and Architecture", Addison-Wesley, USA, 1997.
 A. Tanenbaum, "Structured Computer Organization", Prentice Hall, USA, 1999.
- 5. MIPS32 Architecture for Programmers, Volume I: "Introduction to the MIPS 32™ Architecture".
- MIPS32 Architecture for Programmers, Volume II: "The MIPS 32™ Instruction Set". 6.

Online bibliography

M. Negru, F. Oniga, S. Nedevschi, Lecture slides http://users.utcluj.ro/~negrum

82	Applications (Laboratory)	Teaching methods	Notes			
1	Introduction in the Xilinx ISE environment and the FPGA development board		110100			
2	Design and Implementation of Combinational CPU Components					
3	Design and Implementation of Sequential CPU Components	Blackboard quick				
4	Design of a Single Cycle CPU 1 (MIPS)	overview of key				
5	Design of a Single Cycle CPU 2 (MIPS)	issues, exercises,				
6	Design of a Single Cycle CPU 3 (MIPS)	experimenting with				
7	Design of a Single Cycle CPU 4 (MIPS)	FPGA development				
8	Midterm practical evaluation on the FPGA board	Doards with				
9	Pipelined CPU Design	circuit design and				
10	Pipelined CPU Design					
11	Pipelined CPU Design	(Xilinx ISE)				
12	Pipelined CPU interfacing	(///				
13	Practical evaluation of the pipelined CPU on the FPGA board					
14	4 Final Tests and Evaluation					
Bibli Onlin M N	Bibliography Online bibliography M. Negru, F. Opiga, S. Nedevschi, Laboratory quide http://users.utclui.ro/~pegrum					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Computer Architecture is one of the fundamental subjects of the Computer Science and Information Technology field. It combines fundamental and practical aspects used for digital circuits design and implementation. The content of this subject is harmonized with the specific curricula of other national and international universities, and is evaluated by the Romanian government agencies (CNEAA and ARACIS). The practical aspects involve getting familiar with and using development products and tools provided by companies from Romania, Europe, and USA (ex. Xilinx, Digilent).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10. 3	Weight in the final grade
Course		Testing the theoretical knowledge, the ability of problem solving, presence and activity		Written exam		50 %
Applications		Practical ability to solve and implement specific problems related to processor design, presence and activity		Lab exam, periodical assessment of results		50 %
10.4 Minimum standard of performance						
Knowing the fundamental theory of the subject, the ability to design and implement a processor with a reduced set of instructions.						

Course responsible S.I.dr.ing. Mihai Negru

	1. Data about the program of stu	ay
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	25.

1. Data about the program of study

2. Data about the subject

2.1	1 Subject name						Fundamental Algorithms					
2.2	2.2 Subject area					Com	Computer Science and Information Technology					
2.3	Course respon	nsible	e/lec	turer		Prof.	Prof. dr. eng. Rodica Potolea – Rodica.Potolea@cs.utcluj.ro					
2.4	Teachers in cl	harge	e of a	applications		S.I.d	r.eng. Cameli	a Lemnaru – 🤇	Came	lia.Lemnaru@cs	.utcluj.ro	
2.5	5 Year of study II 2.6 Semester 4					2.7	Assessment	exam	2.8	Subject	DID/OB	
	category											

3. Estimated total time

Sem	Subject name	Lectur e	Ар	olicat s	tion	Lectur e	Арр	olicat s	tion	Individual study	TOTAL	Credit
		[hour	s / v	veek	.]	[h	ours	s / se	me	ster]		
			S	L	Ρ		S	L	Ρ			
4	Fundamental Algorithms	2	1	2	-	28	14	28	-	60	130	5

3.1	Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4	Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Indiv	idual study							Hours
Man	ual, lecture material and notes, bibliog	raphy						21
Supp	elementary study in the library, online	and in th	e fielc	1				16
Prep	aration for seminars/laboratory works,	, homew	ork, re	eports, portfolios, e	essay	S		16
Tuto	ring							8
Exan	ns and tests							9
Other activities								
3.7	Total hours of individual study		60					
3.8	Total hours per semester		130					

4 Pre-requisites (where appropriate)

Number of credit points

3.9

-		
4.1	Curriculum	Imperative programming languages (C şi / sau Java)
		Data Structures and Algorithms
4.2	Competence	Acquire the abilities of designing, implementing, testing and evaluating
		programs to solve specific problems

5

5. Requirements (where appropriate)

5.1	For the course	Whiteboard, projector, computer
5.2	For the applications	Computers/Network of computers, C ++

Professional competences	 C3. Problems solving using specific Computer Science and Computer Engineering tools (5 credit points) C3.1- Identifying classes of problems and solving methods that are specific to computing systems C3.2 - Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 - Applying solution patterns using specific engineering tools and mehods C3.4 - Evaluating, comparatively and experimentally, the available alternative solutions for performance optimization C3.5 - Developing and implementing informatic solutions for concrete problems
	 C4. Improving performances of hardware, software and communication systems C4.1 - Identifying and describing the defining performance elements of hardware, software and communication systems C4.2 - Explaining the interaction of the factors that determine the performances of hardware, software and communication systems C4.3 - Applying fundamental methods and principles for increasing performance of hardware, software and communication systems C4.4 - Chaptering and methods for performance of hardware, software and communication systems
	 C4.4 - Choosing criteria and methods for performance evaluation of hardware, software and communication systems C4.5 - Developing performance based professional solutions for hardware, software and communication systems
Cross competences	N/A

7.1	General objective	 Acquiring modern study of algorithms: design and analysis 	
7.2	Specific objectives	 Learn to identify and design efficient solutions to problems Learn methods to evaluate efficiency Learn the basic polynomial algorithms Learn basic computational complexity Algorithms description with focus on control structures Learning the correct implementation following the pseudocode Efficient implementation of key polynomial algorithms Estimation of algorithms' efficiency: space and processing time 	

8. Contents

8.1. L	ecture (syllabus)	Teaching	Notes
1	Mathematical Foundations: Asymptotical notation, Recurrence	Whiteboard,	
2	Complexity Classes	projector,	
3	Sorting and Order Statistics	computer;	
4	Sorting and Order Statistics (continued)	Lectures,	
5	Advanced Data Structures : Hash Tables, Trees	discussions,	
6	Advanced Data Structures: Heaps, Disjoint Sets	Q&A sessions	
7	Design and Analysis Advanced Techniques: Dynamic Programming	7	
8	Design and Analysis Advanced Techniques: Greedy Algorithms	7	
9	Design and Analysis Advanced Techniques: Damping Analyze		
10	Graphs: Search in a Graph, Minimal Spanning Tree		
11	Graphs: Shortest path		
12	Graphs: Max Flow		
13	Graphs: Bipartite Graphs		
14	Learn the basic Complexity sets and representative problems		
Biblio	graphy		
1. T. (Cormen, C. Rleiserson, R. Rivest, C. Stein, Introduction to Algorithms, Secc	ond Edition, The MIT	Press,

1. T. Co 2001

8.2. /	Applications (Seminars, Laboratory)	Teaching methods	Notes
1	Efficient implementation and comparison of sorting algorithms		
2	Efficient implementation and comparison of sorting algorithms (continued)		
3	Efficient implementation and comparison of lists algorithms		
4	Efficient implementation and comparison of lists algorithms (continued)		
5	Efficient implementation and comparison of trees algorithms	Hands on work	
6	Efficient implementation and comparison of trees algorithms (continued)	on specific	
7	Implementation of augmented data structures	aigoninns,	
8	Implementation of augmented data structures (continued)		
9	Efficient implementation of graphs algorithms	feedback and	
10	Efficient implementation of graphs algorithms (continued)	assistance	
11	Efficient implementation of graphs algorithms (continued)	abbiotarroo	
12	Efficient implementation of graphs algorithms (continued)		
13	Approximation algorithms		
14	Final Evaluation		
Biblio	ography		

1. T. Cormen, C. Rleiserson, R. Rivest, C. Stein, Introduction to Algorithms, Second or third Edition, The MIT Press, 2001

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The topic is fundamental in the field of Computer and Information Technology, its content is beyond dispute, familiarizing students with the principles of algorithms design and analysis. The content is similar (including the textbook) with all representative computer science departments in the world, is a core course in the ACM curricula and was rated by the Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Theoretical analysis and problem solving skills		Written exam		70% (20% MT + 50% FE)
Applications		Hands on Problem solving skills		Implementation/ hands on		30% (Lab)
10.4 Minimur	n star	ndard of performance				
Nota ≥5						

Course responsible Prof.dr.eng. Rodica Potolea

	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	26.

2. Data about the subject

2.1	2.1 Subject name						Fundamental Programming Techniques					
2.2	2.2 Subject area					Com	Computer Science and Information Technology					
2.3 Course responsible/lecturer Prof. dr. eng. Ioan Salomie - Ioan.Salomie@cs.utcluj.							.ro					
2.4	Teachers in cl	harge	e of a	applications		SI. d	Sl. dr. eng. Tudor Cioară,, Sl. dr. eng. Cristina.Pop, As. Drd.					
						Marc	cel Antal, As.d	rd. Claudia F	op, A	s. Drd. Dorin Mol	dovan	
2.5	.5 Year of study II 2.6 Semester 4						Assessment	exam	2.8	Subject	DF/OB	
						category						

3. Estimated total time

Sem	Subject name	Lectur e	Арр	olica s	tion	Lectur e	Арр	olicat s	tion	Individual study	TOTAL	Credit
		[hour	s / v	veek	.]	[h	ours	/ se	mes	ster]		
			S	L	Ρ		S	L	Ρ			
4	Fundamental Programming Techniques	2	-	2	-	28	-	28	-	74	130	5

3.1Number of hours per week43.2of which, course283.3applications					28			
3.4 Total hours in the teaching plan 56 3.5 of which, course 28 3.6 applications					28			
Individual study							Hours	
Manual, lecture material and notes, bibliography							18	
Supplementary study in the library, online and in the field							16	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							24	
Tutoring								
Exams and tests							16	
Other activities								
3.7 Total hours of individual study 74								

J.1	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Fundamentals of Object Oriented Programming
4.2	Competence	Knowledge of Object Oriented Programming

5. Requirements (where appropriate)

5.1	For the course	Blackboard, projector, computer, internet
5.2	For the applications	Computers, specific software, internet

	C4 - Improving the performances of the hardware, software and communication systems
	C4.1 - Identifying and describing the defining elements of the performances of the
lar Ces	hardware, software and communication systems
	C4.2 - Explaining the interaction of the factors that determine the performances of the hardware, software
ence ence	and communication systems
ete	C4.3 - Applying the fundamental methods and principles for increasing the performances of the
ofe	hardware, software and communication systems
<u> </u>	C4. 4 - Choosing the criteria and evaluation methods of the performances of the hardware, software and
	communication systems
	C4.5 - Developing professional solutions for hardware, software and communication systems based on
	performance optimization
S	N/A
e	
sss ten	
D D D	
) m	
ö	

7.1	General objective	Knowledge and using of object-oriented programming techniques for the
		development of professional software applications
7.2	Specific objectives	-to use programming techniques for designing of classes and interfaces,
		including contracts and invariants;
		-to use programming techniques for code reuse by inheritance and polymorphism
		-to use generic programming techniques for collection processing
		-to use programming techniques for reflection and event based
		-to use programming techniques for concurrent and multi-threading programming
		-to use object-oriented and functional programming in an integrated
		approach for the development of flexible and efficient programs
		-to use design patterns and frameworks
		-to use programming techniques for performance and software
		maintenance

8. Contents

8.1. L	ecture (syllabus)	Teaching	Notes			
1	Programming techniques with classes and interfaces	-Using modern	 			
2	Programming techniques using inheritance and polymorphism	multimedia				
3	Programming techniques using contracts and invariants	teaching methods				
4	Generic programming techniques	and direct access				
5	Reflection techniques	-Challenging				
6	Event-driven techniques	questions during				
7	Collection programming techniques	lecturers -Students are invited to collaborate in research projects				
8	Concurrent and multithreading techniques					
9	Flexibility and reuse through design patterns					
10	Main design patterns of type creational, structural and behavioral					
11	Flexibility and reuse through frameworks	-Personal				
12	Lambda Expressions and Stream processing	assistance hours				
13	Multiparadigm (functional and OO) programming techniques	the semester and				
14	Programming techniques for efficiency and performance	before the exam				
Bibliography 1. Ioan Salomie - Tehnici Orientate Obiect, Editura Albastra, Microinformatica, 1995						

2. Eric Gamma, Helm, Johnson, Vlissides - Design Patterns, Addison Wesley, 1995 (translated into Romanian

by Te 3. Jo	by Teora Publ. as "Sabloane de Proiectare") 3. Joshua Bloch - Effective Java, 2/e Addison Wesley, 2008						
4. loa	4. Ioan Salomie, Note de Curs, http://www.coned.utcluj.ro/~salomie/TP						
8.2. /	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes				
1	Intro to lab resources and requirements	-Lab sessions with					
2-3	Assignment 1 - Programming with inheritance and polymorphism	pre-defined exercises and					
4-5	Assignment 2 - Programming with contracts (pre and post conditions) and	assignments					
	invariants	-Using modern					
6-7	5-7 Assignment 3 Programming with multiple threads						
8-9	Assignment 4 – Programming with design patterns	and direct access to internet; -Students are invited to collaborate in research projects					
10-	Assignment 5 – Programming with generics and Java Collection						
11	Framework						
12- 13	Assignment 6 – Multi-paradigm programming						
14	Lab Evaluation	assistance hours during the semester and before the exam					
Biblio	Bibliography						
- Steve McConnell - Code Complete, 2/e, Microsoft Press, 2004							
- <u>http</u>	- http://docs.oracle.com/javase/tutorial/index.html						
- <u>http</u>	://stackoverflow.com/						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Fundamental Programming Techniques is a subject of the domain "Computers and Information Technology". It teaches students to apply object-oriented programming techniques in designing and implementing of software applications. The content was developed based on the analysis of similar disciplines from other universities as well as based on the requirements of the IT employees. The content was also evaluated by Romanian governmental agencies CNEAA and ARACIS.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final
				methods	3	grade
Course		How the students are using programming techniques for: (i) designing of classes and interfaces, including contracts and invariants; (ii) promote code reuse by inheritance and polymorphism; (iii) using generic programming techniques for collection processing; (iv) using programming techniques for concurrent and multi-threading programming; (v) using object- oriented and functional programming in an integrated approach for the development of flexible and efficient programs; (vi) using design patterns and frameworks		written exam		50%
Applications		-Abilities to effectively specify,		-Assessment of		50%
		design, implement and test		programming		
		quality and performance object		assignments		
		 – oriented programs 		-Written exam		

	-Quality of assessment				
	deliverables				
	-Activity during lab sessions				
	-Presence to lab sessions				
10.4 Minimum standard of performance					
-To be able to use object-oriented programming techniques in designing and implementing software					
applications					
-At least mark 5 at the exam and lab evaluation					

Course responsible Prof.dr.eng. Ioan Salomie

	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	27.

2. Data about the subject

2.1	Subject name				Oper	Operating Systems					
2.2	Subject area			Com	Computer Science and Information Technology						
2.3	3 Course responsible/lecturer				Conf	Conf dr. ing. Adrian Coleşa – adrian.colesa@cs.utcluj.ro				ij.ro	
2.4	.4 Teachers in charge of applications			Conf Ing. I	Conf. dr. ing. Adrian Coleşa – <u>adrian.colesa@cs.utcluj.ro</u> Ing. Radu Ciocas – rciocas@bitdefender.com						
					Ing. Gergo Janos Szeles – jszeles@bitdefender.com						
						Ing. Razvan Teslaru – <u>rteslaru@bitdefender.com</u>					
					Ing. /	Alexandru Brînd	lușe – <u>abrir</u>	nduse	@bitdefender.co	<u>om</u>	
2.5	Year of study	II	2.6	Semester	4	2.7	Assessment	exam	2.8	Subject category	DID/OB
	olddy									category	

3. Estimated total time

Sem	Subject name	Lecture	Арр	licat	ions	Lecture	Арр	licati	ons	Individual study	TOTAL	Credit
		[hour	s / v	veek	.]	[h	ours	s / se	mes	ster]		
			S	L	Ρ		S	L	Ρ			
4	Operating Systems	2	-	2	-	28	-	28	-	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study								Hours
Manual, lecture material and notes, bibliography							30	
Supp	plementary study in the library, online	and in th	e field	l				10
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							28	
Tuto	ring							2
Exar	ns and tests							4
Other activities						0		
3.7 Total hours of individual study 74								
3.8 Total hours per semester 130								
3.9 Number of credit points 5								

^{3.8} Total hours per semester3.9 Number of credit points

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer Programming, Data Structures and Algorithms
4.2	Competence	C programming

5. Requirements (where appropriate)

5.1	For the course	Blackboard / Whiteboard, Beamer
5.2	For the applications	Computers, Linux, Windows, Blackboard / Whiteboard

· · · · · ·	
Professional competences	 C3: Problems solving using specific Computer Science and Computer Engineering tools (3 credits) C3.1: Identifying classes of problems and solving methods that are specific to computing systems C3.2: Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3: Applying solution patterns using specific engineering tools and methods C3.4: Evaluating, comparatively and experimentally, the available alternative solutions for performance optimization C3.5: Developing and implementing informatic solutions for concrete problems C4.1: Identifying and describing the defining elements of the performances of the hardware, software and communication systems C4.2: Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems C4.3: Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems C4.4: Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems C4.5: Developing the criteria and evaluation for hardware, software and communication systems C4.5: Developing professional solutions for hardware, software and communication systems
Cross competences	N/A

7.1	General objective	Provide the students a clear understanding of what an OS is, its role and general functionality and the ability to use fundamental system calls of an OS.		
7.2	Specific objectives	Let the students:		
		1. Know and understand the OS specific terminology.		
		2. Understand the general structure and functionality of an OS.		
		3. Understand the specific functionality of the most important OS components, like		
		shell, process manager, file system, memory manager, security manager.		
		4. Understand the functionality of main synchronization mechanisms and be able		
		to use them to solve real synchronization problems.		
		5. Be able to write C programs to use an OS's (Linux and Windows) system calls.		

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Introduction and basic concepts . OS's definition, role, evolution, components, main concepts (file, process, system calls). Basic hardware aspects: CPU, user and kernel mode, memory layers, I/O devices. Basic	(1) use beamer slides, combined with blackboard	
	OS structure.	illustration;	
2	The Shell (Command Interpreter) . Definition, role, functionality, simple and complex commands. Standard input and output redirection.	(2) interactions	
3	File systems (1) . User Perspective. File and directory concept from the user point of view (definition, role, characteristics, operations).	with students: ask their opinion	
4	File systems (2). Windows and Linux File Systems. Permission rights and system calls.	relative to the presented subject;	
5	File systems (3) . Implementation aspects. Implementation strategies overview, space management and related problems, hard and symbolic links.	(3) give each class a short evaluation	
6	Process management . Process model: definition, role, characteristics. Linux and Windows process management system calls.	test; let students discuss and argue	

7	Thread management . Thread model: user vs. kernel threads, implementation problems, usage, performance aspects. Basic scheduling algorithms (FIFO, SJF, Priority-based). Linux and Windows process thread system calls.	each other their solution; give them the good solution and let them	
8	Process synchronization (1) . Theoretical aspects. Context, definition, synchronization mechanisms, techniques and problems (locks, semaphores, monitors, mutual exclusion, starvation, deadlock).	evaluate their own one;	
9	Process synchronization (2) . Classical synchronization patterns: producer/consumer, readers/writers, rendez-vous, barrier, dining philosopher, sleeping barber. Similarities between different synchronization mechanisms.	(4) propose 2-3 interesting study cases of OSes to be prepared and	
10	Inter-process communication. Pipe files, shared memory, message queues, signals.	presented by students;	
11	Memory management (1). Context, definition, binding, basic techniques, space management, addresses translation, swapping.	(5) students are invited to	
13	I/O Devices Management . Principles, disks, clocks, character-oriented terminals.	collaborate in research projects.	
14	Security aspects . Security policies and mechanisms. Basic program's vulnerabilities (buffer overflow).		
Bibli	ography		
1.	Andrew Tanenbaum. Modern Operating System, 2 nd Edition, Prentice-Hall, 2	2005, ISBN 0-13-0926	41-8.
2.	A. Silberschatz, P. Galvin, G. Gagne, Operating Systems Concepts, 8th Edit	ion, Wiley, 2010	P
3.	Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, Operating Systems:	I nree Easy Pieces, or	niine
0.0	Available at http://pages.cs.wisc.edu/~rem2i/OSTEP/	Taaahing mathada	Notoo
0.2.	Applications (Laboratory)	reaching methods	notes
	Get familiar with Linux OS: main characteristics, basic commands, access rights		
2	Linux batch scripts: basic Linux commands, command line structure	(1) students are	
2	scripts command line parameters variables control flow commands	presented a very	
	functions	brief overview of	
3	Linux system calls to access data in files: basic system calls to store	the most important	
Ŭ	and retrieve data to and from regular user files; open, read, write, Iseek,	and difficult	
	close.	aspects of the	
4	Linux system calls for file and directory manipulation: system calls to	working subject:	
	rename or remove a file, link a file to more directories, get information	working subject,	
	about a file or directory, change permission rights and listing a directory		
	contents.	(2) students are	
5	Windows case: NTFS and FS system calls.	given at the	
6	Linux system calls for process management: system calls for creating	beginning of each	
	a new process, terminating an existing process, waiting for a child	class a short	
	process to terminate, loading another executable into an existing process	evaluation quiz;	
L	etc.	· ·	
1	Linux threads: Linux implementation of POSIX functions used to create	(3) students are	
0	and manage threads: pthread_create, pthread_join, pthread_exit etc.	aiven a hande-on	
ð	calls to create and use semaphores: semget, semctl, semop.	tutorial to practice	
9	Synchronization mechanisms (2): POSIX locks and condition variables.	with working	
	Linux functions used to create and use POSIX locks and condition	subject's aspects	
	variables: pthread_mutex_lock, pthread_mutex_unlock,	and to colvo	
	pthread_cond_wait, pthread_cond_signal.		
10	Windows Case: process and thread system calls, synchronization	problems	
44	International (FICO)	(1) aturdanta au	
11	and nameless pipes. System calls for managing and using pipes; pipe	(4) students are	
	and matteress pipes. System cans for managing and using pipes, pipe	given challenging	
12	Memory management: ELE executable file format Virtual ve physical	problems for extra	
12	address space Dynamically allocated memory	orean,	
13	Memory management: memory-mapped files shared memory		
	monory management. memory-mapped mes, shaled memory.		

14	Security aspects: buffer overflow detection and correction.				
	Piblicgrophy				

Bibliography

- 1. Lecture slides and laboratory text and support at http://moodle.cs.utcluj.ro/
- 2. M. Mitchell, J. Oldham, A. Samuel, Advanced Linux Programming, New Riders Publishing, 2001

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

OS knowledge is a fundamental requirement in the CS field. We follow the ACM curricula guide. We also consult relevant IT companies about their practical expectations regarding OS knowledge and adapt accordingly our course contents. In this sense, Linux and Windows are the most used OSes. Usually the teachers in charge of lab classes are former graduate students of our CS program with consistent experience in industry. They are permanently consulted regarding the OS course curriculum and its applicability in real projects in industry.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in
			the final grade
Course	Students must understand fundamental OS	Small problem-like subjects	0.67
	concepts and be able to correctly define	requiring students to apply the	
	them. They must also be able to apply their	theoretical learned OS related	
	knowledge to solve user-space problems	aspects to give a solution to	
	related to or dependent by an OS.	proposed problem.	
Applications	Students must be able to develop C	Quiz tests. Programming	0.33
	programs that use different OS system	problems, whose solution has	
	calls to solve practical, problems related to	to be implemented in C and	
	or dependent by an OS.	run on computers.	
		•	•

10.4 Minimum standard of performance.

Students must attend minimum **9 lecture classes** to be allowed to take the exam in the regular exam session. Students must attend minimum **7 lecture classes** to be allowed to take the exam in any re-examination sessions. Less than 7 attended lecture classes leads to the interdiction to take any course re-examination in the university year the course is taught.

Students must attend minimum **12 lab classes** to be allowed to take the exam in the regular exam session. Students must attend minimum **10 lab classes** to be allowed to take the exam in any re-examination sessions. Less than 10 attended lab classes leads to the interdiction to take any lab re-examination in the university year the course is taught.

Students are allowed to take the final course examination only after passing the lab examination.

Be able to define the fundamental OS principles and concepts, like process, thread, file, directory, lock, semaphore, paging.

Be able to write C program to use fundamental system calls in Linux for working with files, processes, threads, synchronization mechanisms and memory.

Course responsible Conf.dr.ing. Adrian Colesa

	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	28.

2. Data about the subject

2.1	Subject name				Elen	Elements of Computer Assisted Graphics					
2.2	2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Prof.	Prof.dr.eng. Gorgan Dorian – dorian.gorgan@cs.utcluj.ro					
2.4	4 Teachers in charge of applications			Lect.dr.eng. Bacu Victor, As.eng. Constantin Nandra,							
					{victor.bacu, constantin.nandra}@cs.utcluj.ro						
2.5	Year of study	II	2.6	Semester	4	2.7	Assessment	exam	2.8	Subject	DF/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur	Арр	olica s	tion	Lectur	Арр	licat	tion	Individual study	τοται	Credit
•)		0)		5		Study	TOTAL	orean
		[hour	s / v	veek	.]	[h	ours	/ se	mes	ster]		
			S	L	Ρ		S	L	Ρ			
4	Elements of Computer Assisted Graphics	2	-	2	-	28	-	28	-	48	104	4

3.1	.1 Number of hours per week 4 3.2 of which, course 2 3.3 applications					2		
3.4	3.4 Total hours in the teaching plan 56 3.5 of which, course 28 3.6 applications					28		
Individual study							Hours	
Man	ual, lecture material and notes, bibliog	graphy						20
Supplementary study in the library, online and in the field						6		
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10	
Tutoring						3		
Exams and tests						9		
Other activities						0		
3.7	3.7 Total hours of individual study 48							

5.7	Total hours of individual study	40
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer programming (C language)
4.2	Competence	Applications development in C programming language

5. Requirements (where appropriate)

5.1	For the course	Projector, computer
5.2	For the applications	Laboratory attendance is mandatory
		Study of laboratory materials from the server

Professional competences	 C3 – Problems solving using specific Computer Science and Computer Engineering tools (4 credits) C3.1 – Identifying classes of problems and solving methods that are specific to computing systems C3.2 – Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 – Applying solution patterns using specific engineering tools and mehods C3.4 – Evaluating, comparatively and experimentally, the available alternative solutions for performance optimization C3.5 – Developing and implementing informatic solutions for concrete problems
Cross competences	N/A

7.1	General objective	Learning about the architecture of a graphic system, the study of the graphic pipeline, the study of 2D graphic algorithms
7.2	Specific objectives	 Creation of the graphical model of a scene of objects Implementation of the basic algorithms that form the core of a graphic system Development of graphic applications in a high-level programming language (C, C++) Implementation of the main phases of the graphic transformation pipeline

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes					
1	Introduction. History. Examples							
2	Graphics systems – architecture, standards							
3	Graphics devices – logic and physics devices, input, output and							
	interactive devices							
4	Graphics transformations pipeline – 2D and 3D transformations.	New multimedia						
	Matrix operators		During the					
5	Mathematics in computer graphics	approaches will be	semester					
6	Lines scan conversion algorithms	used in classes.	and before					
7	Circles scan conversion algorithms	The course is	each exam					
8	Polygons scan conversion algorithms	interactive and	there are a few					
9	Clipping algorithms – point, line, polygon and text	includes						
10	Projections and viewing transformations	demonstrations	preparation					
11	Photorealistic presentation of 3D objects – concepts, algorithms,	that exemplify	hours					
	examples	graphical methods	planned.					
12	Color models – color perception, color space and standards, color in	and algorithms.						
	software design	Ŭ						
13	Graphics formats – vector and raster formats, data compression,							
	Web technologies							
14	Graphics pattern grammars							
Biblio	graphy							
7. F	Foley J.D., van Dam, A., Feiner, S.K., Hughes, J.F., "Computer Graphic	s. Principles and Pra	ctice".					
F	Addison-Wesley Publishing Comp., 1992.							
8. \	Natt A., "3D Computer Graphics". Addison-Wesley, 1998.							
In vi	rtual library							
1. C	Course resources, http://cgis.utcluj.ro/teaching/							
8.2. /	Applications (Laboratory)	Teaching methods	Notes					
1	Introduction to SDL	Documentation	Each					
2	Mathematics in computer graphics: vectors	and examples will	student will					
3	Mathematics in computer graphics: matrices	be available to the	have to					
4	Graphics transformations	students, prior to	develop a					
5	Graphics transformations in SDL the laboratory specific							

6	Line rasterization using the Bresenham algorithm	classes, on a	project			
7	Clipping algorithms for graphical primitives	dedicated server.	based on the knowledge acquired at			
8	Viewing transformations	The students will				
9	Triangle rasterization using barycentric coordinates	work				
10	Intermediate assessment	independently but				
11	Hidden surface removal using the z-buffer algorithm	will also be	the laboratory			
12	Bezier curves	assisted by the				
13	Color computation	teacher.	nours.			
14	4 Final assessment					
Bibliography						
In virtual library						
1	1. Course and practical works, http://cgis.utclui.ro/teaching/					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline is integrated into the Computers and Information Technology domain. The content is classic, yet modern, and introduces to students the fundamentals of graphic systems and 2D algorithms. The content of this discipline has been aligned with the information presented in similar disciplines from other major universities and companies from Romania, Europe and USA and has been evaluated by the authorized Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the final		
				methods		grade		
Course		The written exam evaluates the		Evaluation is		60% (E)		
		understanding of the information		performed through				
		presented in classes and the		written exam.				
		ability to apply this knowledge.						
Course		The activity in class evaluates		Evaluation is		10% (AC)		
activity		the active involvement of the		performed through				
		students in the teaching process		a very short tests.				
		and their participation to the						
		discussions, debates and other						
		class activities during the entire						
		semester.						
Applications		Laboratory assessment		Evaluation is		40% (L)		
		evaluates the practical abilities		performed through				
		obtained by the students.		written and				
		Through homework		practical exam.				
		assignments the students have						
		the opportunity to develop their						
		skill in applying the notions,						
		concepts and methods						
presented in class.								
10.4 Minimur	10.4 Minimum standard of performance							
Graduation re	Graduation requirement: M≥5; final mark M=0.5*E+0.4*L+0.1*AC							

Course responsible Prof.dr.ing. Dorian Gorgan

	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	29.

2. Data about the subject

]							
2.1	Subject name			Forei	Foreign Language II (English, French, German - Technical						
					documents elaboration)						
2.2	2.2 Subject area Compute					mputer Science and Information Technology					
2.3	Course responsible/lecturer				Lector dr. Sanda Paduretu						
2.4	.4 Teachers in charge of applications -										
2.5	Year of study		2.6	Semester	4	2.7	Assessment	Colloquium	2.8	Subject	DC/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	Ар	olica s	tion	Lectur e	Арр	Application s		Individual study	TOTAL	Credit
			[hours / week.]			[hours / semester]						
			S	L	Ρ		S	L	Ρ			
4	Foreign Language II (English, French, German - Technical documents elaboration)	2	-	-	-	28	-	-	-	24	52	2

3.1	Number of hours per week	2	3.2	of which, course	2	3.3	applications	-	
3.4	Total hours in the teaching plan	28	3.5	of which, course	28	3.6	applications	-	
Indiv	idual study							Hours	
Manual, lecture material and notes, bibliography									
Supp	elementary study in the library, online	and in th	e fielo	k					
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, e	ssays			24	
Tuto	ring								
Exan	ns and tests								
Othe	r activities								
3.7	Total hours of individual study		24						
3.8 Total hours per semester 52									
3.9	Number of credit points		2]					

4. Pre-requisites (where appropriate)

4.1	Curriculum	None				
4.2	Competence	Minimum B2 level (CEFR)				

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Class attendance, individual study

	N/A
Professional competences	
Cross competences	CT3 – Demonstrating the spirit of initiative and action for updating professional, economical and organizational culture knowledge (2 credits)

7.1	General objective	Students should acquire knowledge and integrated skills to communicate in a foreign language in professional (technical and engineering) contexts and on job related topics.
7.2	Specific objectives	At the end of this course, the students will be able to: - identify and apply the main principles of effective communication in English - read and write using effective academic and technical writing techniques; -participate and express their opinion, evaluation and recommendation in technical exchange of information; -take notes on specialized topics within their field of specialization; -have the necessary skills read and write scientific articles -read and extract specific and general information from a variety of technical texts;

8. Contents

8.1. L	ecture (syllabus)	Teaching	Notes
		methods	
1	Introduction to communication. Communication in an academic setting.	Lecture by	
	Communication at work.	teacher, drill and	
2	The writing process. Features and stages of the writing process.	practice, class	
3	Readability. Characteristics and formulae for readability.	discussion,	
4	Improving readability. Web-page / computer programming readability.	questions and	
5	Fundamentals of effective technical writing.	answers,	
6	Overview of technical and scientific language used in written	textbook /	
	communication. Best words and phrases. Reading grammar. Formal and	reading	
	informal language.	assignments,	
7	Paragraphs. What is a paragraph? Elements of a paragraph.	formative	
	Development of a paragraph.	assessment	
8	Basic types of documents. User manuals, technical reports.		
9	Citation: plagiarism, paraphrasing, summary, academic conventions		
10	Plagiarism I: Complexities of definition. Plagiarism in Academic contexts.		
	The Academy's response to plagiarism		
11	Plagiarism II: Learning to write from sources. The "shock" of referencing.		
	Avoiding plagiarism.		
12	Plagiarism III: The art of finding plagiarism. Types of academic		
	misconduct (ghost-writing, contract cheating, falsifying data).		
13	Plagiarism IV: Student's research on typologies of plagiarism. Assignment		
	discussion. Identifying main types (copy-paste, verbatim, translations,		
	disguised, shake and paste, clause quilts, structural, cut and slide, self-		
	plagiarism).		
14	Style. Final conclusion.		
Biblio	graphy		

1.Marinela Granescu, Ema Adam, Effective academic and technical writing, UTPress, Cluj-Napoca, 2010						
2. Justine Jobel, Writing for Computer Science: the art of effective communication, Springer Verlag,						
Melbourne, 2000						
3. Simon Haines, Real writing with answers, Cambridge University Press, 2008						
4. R.R. Jordan, Academic writing course, Nelson, 1992						
8.2. Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes				
1 -						
Bibliography						
-						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Mastering the elements of effective academic and technical writing will help the students in the field of computer science to integrate better in the labour market and improve personal development. The introduction in the language for specific purposes and academic discourse will facilitate reading and writing more documents in the field of study, making informed decisions on various types of information, and keeping up-to-date with state of the art knowledge in students' professional field. Most engineers or scientists work in organizational settings where team work is essential and good team work is impossible without good communication.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2	Assessment methods	10. 3	Weight in the final grade
Course	Completion of end-term evaluation, individual study, attendance to course		On-going class- work evaluation, and one end-term test (integrated skills)		Class-work evaluation - 20% End-term test – 80%
Applications					
10.4 Minimur	n standard of performance				
at least 50% of	of all components of tasks solved corre	ectly			

Course responsible Lect.dr. Sanda Paduretu

Head of department Conf.univ.dr. Ruxanda Literat