1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4	Field of study	Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	37.				

2. Data about the subject

2.1	Subject name				Struc	Structure of Computer Systems						
2.2	.2 Subject area				Computer Science and Information Technology							
2.3	Course respons	ible/le	ectur	er		Prof.	Prof. dr. eng. Gheorghe Sebestyen – Gheorghe.Sebestyen@cs.utcluj.ro					
2.4	Teachers in cha	rge o	f app	lications		As.dı	As.dr.eng. Anca Hangan, As.dr.eng. Madalin Neagu					
2.5	Year of study	III	2.6	Semester	6	2.7	Assessment	exam	2.8	Subject category	DID/OB	

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]			ter]					
			S	L	P		S	L	P			
6	Structure of Computer Systems	2	-	2	1	28	-	28	14	34	104	4

3.1 Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4 Total hours in the teaching plan	3.4 Total hours in the teaching plan 70 3.5 of which, course 28 3.6 applications						
Individual study							
Manual, lecture material and notes, bibliograp	hy						14
Supplementary study in the library, online and in the field							4
Preparation for seminars/laboratory works, ho	mework, 1	eports	, portfolios, essays				13
Tutoring							0
Exams and tests							3
Other activities							0

3.7	Total hours of individual study	34
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Digital system design, Computer architecture
4.2	Competence	Understand and operate with basic concepts regarding computer system's
		hardware

5. Requirements (where appropriate)

	5. Reduirements (where appropriate)								
5.1	For the course								
5.2	For the applications								

6. Specific competences

	C2 – Designing hardware, software and communication components (5 credits)
	C2.1 – Describing the structure and functioning of computational, communication and software components and
nal	systems
sio	C2.2 – Explaining the role, interaction and functioning of hardware, software and communication components
1 8 8	C2 3 - Ruilding the hardware and software components of some computing systems using algorithms, design
Pro	methods, protocols, languages, data structures, and technologies
H	C2.4 – Evaluating the functional and non-functional characteristics of the computing systems using specific metrics
	C2.5 – Implementing hardware, software and communication systems
	N/A
e.	
Cross	
Cross	
ت	

7. DI	7. Discipline objectives (as results from the key competences gainea)						
7.1	General objective	The main goal of the course is to present in an accessible way advanced design methods and techniques used in today's microprocessors and computer systems					
7.2	Specific objectives	To study: Methods and metrics for computer performance assessment Advanced CPU designs (pipelining, multicore, parallele and distributed computing) Memory hierarchies: cache memory, virtual memory, new DRAM technologies RISC architecture Parallel computers architectures – hardware issues and solutions					

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes					
1	Introduction. Computer Performance Parameters and Methods of Improvement	Lecture based on						
2	Computer performance and optimality, Benchmarking	slides						
3	The Arithmetical and Logical Unit (ALU)							
4	The Central Processing Unit (CPU) – MIPS architecture, pipeline, hazard cases							
5	The Central Processing Unit – advance techniques: Scoreboard method,							
	Tomasulo's algorithm, Branch prediction techniques							
6	The Central Processing Unit – multi-core systems							
7	Microprocessors – basic components and advanced implementations							
8	Memory System – memory technologies (SRAM, DRAM) and design principles							
9	Memory Hierarchies – cache and virtual memory							
10	Interconnection Systems – serial and parallel synchronous and asynchronous							
	buses, multipoint interconnections							
11	Parallel Computer Architectures - different levels of parallel execution							
12	RISC Architectures – principles and implementation examples							
13	Distributed Computing – GRID and Cloud Systems							
14	Technological Perspectives in Computer Architectures							
Biblio	ography							
	1. Gorgan Dorian, Sebestyen Gheorghe, Structura Calculatoarelor, Editura albastra	, Cluj-Napoca 2005						
2	2. Hennessy John, Patterson David, Computer architecture, a Quantitative Approach	h, Ed. Elsevier, 2007						
	3. Baruch, Z. F., Structure of Computer Systems, U.T.PRES, Cluj-Napoca, 2002, I	SBN 973-8335-44-2.						
8.2.	Applications (Laboratory)	Teaching methods	Notes					
1	Measuring the performance of computer systems with benchmarks							
2	CPU performance monitoring using the Time-Stamp Counter register							
3	Programming elements in VHDL	Practical designs,						
4	Design of ALU components experiments and							
5	FPGA Synthesis	results assesment						
	•							

Introduction to using PicoBlaze microcontroller with the Nexys3 board Implementation of a MIPS processor in VHDL - 1

8	Implementation of a MIPS processor in VHDL - 2		
9	Implementation of a pipelined MIPS processor in VHDL		
10	Memory design - 1		
11	Memory design - 2		
12	Advanced Hardware Design Techniques		
13	Design implementations on NEXYS 3 board		
14	Laboratory Colloquy		
Topic	es for Project Assignments: Implementation of arithmetic circuits; Design and		
imple	ementation of processors and controllers; Signal Processing; Hardware		
imple	ementation of DSP and image processing algorithms; Design of I/O interfaces.		
Bibli	ography	_	
	. Laboratory works at http://users.utcluj.ro/~ancapop/scs.html		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course		Theoretical knowledge level		Written exam		60%	
Applications		Hardware Design skills		Practical evaluation		40%	
10.4 Minimum standard of performance							
Minimum 5 for the Course and for the Application assessment							

Course responsible Prof.dr.eng. Gheorghe Sebestyen

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	38.

2. Data about the subject

2.1	Subject name			Form	Formal Languages and Translators						
2.2	Subject area			Computer Science and Information Technology							
2.3	Course responsible/lecturer			Asso	Assoc.prof. dr.eng. Emil Şt. Chifu – emil.chifu@cs.utcluj.ro						
2.4	Teachers in cha	rge o	f app	lications							
2.5	Year of study	III	2.6	Semester	6	2.7	Assessment	exam	2.8	Subject category	DID/OB

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]								
			S	L	P		S	L	P			
6	Formal Languages and Translators	2	•	2		28	•	28	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							
Manual, lecture material and notes, bibliography							17
Supplementary study in the library, online and in the field							7
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							16
Tutoring							5
Exams and tests							3
Other activities							0

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer Programming, Data Structures and Algorithms
4.2	Competence	Basic knowledge of programming and data structures (preferably in the C
		language)

5. Requirements (where appropriate)

	· 1 (· ·	,
5.1	For the course	Blackboard, overhead projector, computer
5.2	For the applications	Computers, specific software

6. Specific competences

	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (2 credits)
	C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming
	paradigms, and modeling computational and communication systems
l ss	
- Suc	C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure
ete	and the functioning of hardware, software and communication systems
ďα	C1.3 – Building models for various components of computing systems
Ö	C1.5 – Providing a theoretical background for the characteristics of the designed systems
 	
Professional competences	C3 – Problems solving using specific Computer Science and Computer Engineering tools (2 credits)
SSi	
ě	C3.1 – Identifying classes of problems and solving methods that are specific to computing systems
ro	C3.2 – Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their
Д	results
	C3.3 – Applying solution patterns using specific engineering tools and mehods
	C3.5 – Developing and implementing informatic solutions for concrete problems
	N/A
v.	
e S	
SS	
Cross	
5	

7.1 General objective	To know the phases, components, and algorithms used by typical language translators.
	◆ To provide a formal basis for the development of concepts relating to lexical and syntactic processors in translators.
7.2 Specific objective	To know the underlying formal models such as finite state automata and push-down automata, and to understand their connection to language definition through regular expressions and grammars.
	• To understand the relationships between formal descriptions of the automata in the formal language theory and their practical implementations as lexical and syntactic analyzers in translators.
	To know the classes of languages for which a deterministic parser can be implemented.
	To describe the syntax of languages to be implemented by using grammars and regular expressions.
	• To design, develop and test a software project, by utilizing specialized software tools (parser generators), in order to arrive at a translator for an artificial language.
	To master and control the phenomena of ambiguity and nondeterminism (conflicts) which occur when using parser generators and lexical analyzer generators.

8. Contents

8.1. Le	ecture (syllabus)	Teaching methods	Notes
1	Descriptive tools: strings and rewriting systems, grammars.	- The main ideas	N/A
2	Descriptive tools: derivations and parse trees, extended Backus-Naur form.	with multimedia	
3	Regular grammars and finite automata: finite automata.	tehniques	
4	Regular grammars and finite automata: state diagrams and regular expressions.	- Details and	
5	Context-free grammars and push-down automata.	examples at the	
6	Lexical analysis: decomposition of the grammar, lexical analyzer interface,	blackboard, in	
	construction of the lexical analyzer (state diagrams, reserved words method).	interaction with	
7	Top-down analysis and LL(k) grammars: LL(k) grammars, the LL(k) algorithm.	the students	
8	Top-down analysis and LL(k) grammars: elimination of left recursion, left	- There are	
	factoring.	consultation hours	
9	LL parsers: strong LL(k) grammars, the LL(1) parsing algorithm.	- Students are	
10	LL parsers: LL(1) parser in the interpretive variant, computation of FIRST and	invited to	
	FOLLOW sets.	collaborate in	

11	Bottom-up analysis and LR(k) grammars: situations and nonterminal closure,	research projects				
	LR(k) algorithm.					
12	LR parsers: the LR(0) parsing algorithm, LR(0) states, SLR(1) grammars.					
13	LR parsers: LALR(1) grammars, the LALR(1) algorithm, shift-reduce transitions,					
	chain production elimination, LR table compression.					
14	Basic concepts of attribute grammars.					
Biblio	ography					
1.	W.M. Waite, G. Goos, Compiler Construction, Springer-Verlag, 1984.					
	The Lex & Yacc Page, http://www.combo.org/lex_yacc_page/					
	I.A. Leția, E.Șt. Chifu, Limbaje formale și translatoare, Ed. Casa cărții de știință, 199					
8.2. /	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes			
1	Symbol tables.					
2	Lexical analyzer for C.					
3	The generator of lexical analyzers Lex: Lex source, Lex regular expressions, Lex					
	actions, ambiguous rules, Lex source definitions.					
4	Lex generator: left context sensitivity, examples, Lex applications.					
5	The bottom-up parser generator Yacc: basic specifications, Yacc syntax, actions,	Deinformantation				
	lexical analysis, how the parser works.	Brief presentation				
6	Yacc generator: ambiguity and conflicts, precedence and associativity, error	at the blackboard,				
	handling, the Yacc environment, hints for preparing specifications.	implementing and testing				
7	Yacc generator: support for arbitrary value types, examples, Yacc applications.	homeworks on the	N/A			
	Review of using Yacc and Lex, in preparation for the lab test.		IN/A			
8	Lab test (Using Yacc and Lex).	computer, individual				
9	Definition of individual assignment (Translator implementation using Yacc and assignment on the					
	Lex generators).					
10	Definition of individual assignment design (regular expressions and grammar of	Computer				
	the language).					

Bibliography

12

13

 I.A. Leţia, D. Marcu, B. Ungureanu, Procesoare de limbaje. Îndrumător de laborator, lito. Universitatea Tehnică din Cluj-Napoca, 1995.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is a specialty course in Computer Science, its syllabus being both classical and modern. It teaches the students with the basic principles in the design of interpreters and translators for artificial languages. The syllabus of the course has been discussed with other important universities and companies from Romania, Europe, and USA. This syllabus has been evaluated by Romanian governmental agencies (CNEAA and ARAIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods 10.3	Weight in the final grade				
Course	- Problem-solving skills	- Written exam	60%				
	- Attendance, Activity						
Applications	- Problem-solving skills	- Lab test	20%				
	- Attendance, Activity	- Assesement of the	20%				
		individual					
		assignment					
10.4 Minimum standard of performance							

Modeling a typical engineering problems using the domain specific formal apparatus Obtaining final grade 5

Assessment of the formal definition of the design for the assignment.

Implementation of the assignment.

Implementation of the assignment.

Final assessment of the individual assignment.

Course responsible Assoc.prof.dr.eng. Emil Chifu

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2 Faculty Automation and Computer Science						
1.3	Department	Computer Science				
1.4 Field of study		Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	39.				

2. Data about the subject

2.1	Subject name				Mana	Management and communication					
2.2	2.2 Subject area			Computer Science and Information Technology							
2.3	.3 Course responsible/lecturer			Prof.	Prof. dr. Doina Catana						
2.4	2.4 Teachers in charge of applications										
2.5	Year of study	III	2.6	Semester	6	2.7	Assessment	Colloquium	2.8	Subject category	DC/OB

3. Estimated total time

Sem.	Subject name	Lecture Applications		Lecture	Lecture Applications Individual study			TOTAL	Credit			
		[hours / week.]		[hours / semester]								
			S	L	P		S	L	P			
6	Management and communication	2	-	-	-	28	-	-	-	24	52	2

3.1 Number of hours per week	2	3.2	of which, course	2	3.3	applications	-
3.4 Total hours in the teaching plan	28	3.5	of which, course	28	3.6	applications	-
Individual study							Hours
Manual, lecture material and notes, bibliography							6
Supplementary study in the library, online and in the field							7
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							6
Tutoring						3	
Exams and tests							2
Other activities							

3.7	Total hours of individual study	24
3.8	Total hours per semester	52
3.9	Number of credit points	2

4. Pre-requisites (where appropriate)

4.1	Curriculum	Microeconomics
4.2	Competence	Being acquainted with economic language, understanding and using it

5. Requirements (where appropriate)

5	.1	For the course	Presence of multimedia technology
- 1-5	.2	For the applications	Not the case

6. Specific competences

C5 – Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (1 credit)

C5.2 – Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of the application field

Professional

	- 7
	(
	0
SS	,
S	- 1
	-
\sim	- 7
_	- 3
7)	
$\overline{}$	
	- 1
	- 2

CT3 – Demonstrating the spirit of initiative and action for updating professional, economical and organizational culture knowledge (1 credit)

7. Discipline objectives (as results from the key competences gained)

7. 2	7. Discipline objectives (as results from the key competences gainea)						
7.1	General objective	To understand the general framework of managerial functions and the role					
		of communication in performing them					
7.2	Specific objectives	-To understand the basic roles, skills and functions of management in the open system of an organization - To understand the role of ethics and organizational culture in achieving the organizational goals in efficient and effective ways - To understand the basics of designing organizational strategies in the more and more complex and dynamic general and task environment - To understand and use of effective communication in group, organization and business negotiation, as potential leaders or/and group/organizational members					

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1 2 3 4 5 6 7 8	Introduction in management: management concept, managerial functions, the managers, challenges confronting contemporary management Organization's internal environment: culture and business ethics External environment (general and task environments components) Planning Organizing Coordinating and motivating people Controlling and performance assessment Organizational communication (content, functions, types, networks);	rement: management concept, managerial functions, the confronting contemporary management all environment: culture and business ethics (general and task environments components) Interactive lecturing, ppt./prezi support/short mance assessment mance assessment	
9	interpersonal and group communications Communication barriers	class exercises-	2
10 11 12 13	Increasing communications effectiveness in group and organization Conflict and conflict management Negotiation and assertive communication Leadership and communication		2 2 2 2 2

Bibliography

- 1. Catana, D., 2014, Management and communication, Lecture support, available at www.management.utcluj.ro (password needed)
- 2. Baterman, T.S., Snell, S. A., 2013, Management: Leading&Collaborating in the Competitive World, 10th Ed., Mc Graw Hill
- 3. Becker, E.F., Wortmann, J., Mastering communication at work: how to lead, manage and influence, McGraw Hill Professional, 2009, available at:

 $\underline{http://books.google.ro/books/about/Mastering_Communication_at_Work.html?id=0G6LuTp6XhsC\&redir_esc=y$

- 4. Nicolescu, O., Verboncu, I (2008), Fundamentele managementului organizatiei, Editura Universitara, Bucuresti
- 5. Catana D., Dobra Constantinescu A. (2004), Management in Power Point, UTPRES
- 6. Hynes, G. E. (2005), Managerial communication, Strategies and applications, 3rd ed. McGraw Hill

8.2. A	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes					
1	Not the case	-	-					
Bibliography								

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The syllabus is set up based upon the feedback got from employers of UTCN alumni, as well as on trends in the business

and general environment

10. Evaluation

Activity type	10.1 Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade			
Course	Exam score (E); Class involvement (I)		- on-line examination (closed and open ended questions) - presenting team projects on communication topics		N = 0.6E + 0.4 I;			
Applications 10.4 Minimum standard of performance N>5								

Course responsible Prof.dr. Doina Catana

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4 Field of study		Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	40.				

2. Data about the subject

2.1	2.1 Subject name				Image Processing						
2.2	2.2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Prof	Prof dr. eng. Sergiu Nedevschi (sergiu.nedevschi@cs.utcluj.ro)					
2.4	Teachers in cha	arge o	f app	lications		Sl. dr. eng. Florin Oniga, JAs. dr. eng. Raluca Brehar, Dr. eng. Ion					
						Giosan, Sl.dr. eng. Cristian Vicas { Florin.Oniga, Raluca.Borca,					
						Ion.C	Giosan, Cristian	.Vicas}@cs.uto	cluj.ro)	
2.5	Year of study	III	2.6	Semester	6	2.7	Assessment	exam	2.8	Subject category	DID/OB
											1

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]			ter]					
			S	L	P		S	L	P			
6	Image Processing	2	•	2	1	28	-	28	14	34	104	4

3.1 Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4 Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Individual study							
Manual, lecture material and notes, bibliograph	hy						14
Supplementary study in the library, online and in the field							3
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							14
Tutoring							0
Exams and tests							3
Other activities							0

3.7	Total hours of individual study	34
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Computer programming (C++), Data structures and algorithms, Linear Algebra,
		Numerical methods, Special mathematics.

5. Requirements (where appropriate)

5.1 For the course		Blackboard, video projector, computer
5.2	For the applications	Workstations, specific software (Visual Studio, Diblook)

6. Specific competences

ional	C6 - Designing intelligent systems C6.1 - Describing the components of intelligent systems C6.2 - Using domain-specific tools for explaining and understanding the functioning of intelligent systems C6.3 - Applying the fundamental methods and principles for specifying solutions for typical problems using intelligent systems C6.5 - Developing and implementing professional projects for intelligent systems
Cross	N/A

7. D	7. Discipline objectives (as results from the key competences gainea)						
7.1	General objective	Understanding the concepts related to digital images, computer vision and					
		image processing. Learning and applying image processing methods, and					
		designing specific applications.					
7.2	Specific objectives	 Learning, evaluation and use of image processing specific concepts, algorithms and methods: digital image formats, camera model, statistical analysis, image filtering, image enhancing and restauration, segmentation, measurement. Acquiring the capacity of finding optimal solutions for image processing algorithm implementation, taking into consideration time and hardware constraints. Acquiring the capacity of quantitative and qualitative assessement of results, algorithms and systems for image processing. Learning the use of programming tools and image processing frameworks (Diblook, MS MFC) 					

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Computer vision and its applications. Structure and functionality of computer	Interactive	N/A
	vision systems. Image acquisition systems.	teaching, using	
2	Camera model, the image formation process, coordinate transforms, calibration.	oral presentations	
3	Fundamentals of stereovision, stereo configurations, depth computation, epipolar	supported by	
	geometry.	multimedia tools,	
4	Binary image processing. Morphological operations.	consultations,	
5	Binary image processing. Object labeling, contour tracing.	involving students	
6	Binary image processing. Simple geometrical properties of binary objects.	in research and	
7	Grayscale image processing. Statistical properties. Image quality enhancement.	development	
8	The convolution operation. Fourier transform.	activities.	
9	Grayscale image processing: Modeling, detection and removal of image noise.		
10	Grayscale image processing: digital filtering.		
11	Grayscale image processing: Edge detection.		
12	Grayscale image processing: Advanced methods for edge extraction and linking.		
13	Grayscale image processing: Texture features.		
14	Image region segmentation using intensity, color and texture features.		
D 11.11	1.		

Bibliography

- 1. R.C.Gonzales, R.E.Woods, "Digital Image Processing-Second Edition", *Prentice Hall*, 2002.
- 2. G. X.Ritter, J.N. Wilson, "Handbook of computer vision algorithms în image algebra", CRC Press, 2001.
- 3. E. Trucco, A. Verri, "Introductory Techniques for 3-D Computer Vision", Prentice Hall, 1998.
- 4. S. Nedevschi, "Prelucrarea imaginilor și recunoasterea formelor", Ed. Microinformatica, 1997.
- 5. R. Haralik, L. Shapiro, "Computer and Robot Vision", Addison Wesley, 1993.

Online

1. S. Nedevschi, T. Marita, "Prelucrarea imaginilor - Note de curs", http://users.utcluj.ro/~nedevski/IP/index.html, http://users.utcluj.ro/~tmarita/IPL/IPCurs.htm

8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Image processing tools (Intel IPL, Photoshop). Diblook, basic concepts of MFC.		
2	Introduction to the DIBLook framework.		
3	Color spaces. Conversions from color to grayscale, and from grayscale to binary.		
4	Morphological operations applied on binary images.		
5	Object labeling on binary images.	Presentation using	
6	Geometrical properties of binary objects.	the blackboard	
7	Statistical properties of grayscale images.	and multimedia	
8	Image enhancement using spatial filters.	tools.	
9	Image filtering using convolution.		
10	Modeling and elimination of noise.	Experiments and	
11	Edge-based image segmentation (part 1)	implementation	
12	Edge-based image segmentation (part 2)	using specific	N/A
13	Region-based image segmentation.	software tools	
14	Final evaluation.	(MS Visual	
8.2.	Applications (Projects)	Studio, Diblook)	
1	Choosing and discussing the project subject (weeks 1 and 2).		
2	Discussing the literature study and the work schedule (weeks 3 and 4).	Evaluation of the	
3	Algorithm design (weeks 5 and 6)	design and	
4	Presentation of algorithm implementation. Intermediary evaluation (weeks 7 and	implementation	
	8).	phases.	
5	Algorithm testing and validation. Quantitative and qualitative evaluation (weeks		
	9 and 10).		
6	Algorithm optimization (weeks 11 and 12).		
7	Final project assessment (weeks 13 and 14).		
Bibli	ography		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

1. T.Marita, R.Danescu, F.Oniga, R.Borca, I.Giosan Lucrari de laborator, http://users.utcluj.ro/~tmarita/IPL/IPLAB.htm

The subject is part of the Computer Science and Information Technology curriculum, its contents combining fundamental and practical aspects used in the field of visual information processing (an ever growing domain). The subject content is correlated with the specific curricula of other Universities, in Romania and abroad, and is evaluated by government agencies (CNEAA and ARACIS). The subject's activities are meant to make the students familiar with the applications and the research directions of the image processing field, helped by the internationally renowned experience of the teachers.

10. Evaluation

To: Evaluation		T	1	T	1	T		
Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade		
Course		Testing the theoretical knowledge		Written exam		50 %		
		acquired, and the practical abilities						
		of problem solving.						
Applications		Testing the practical abilities of		Lab exam, project		50 %		
		designing and implementing		assessment				
		solutions to specific problems.						
Attendance and activity.								
10.4 Minimum standard of performance								
Modeling and implementation of solutions to specific engineering problems, using the domain's formal apparatus.								

Course responsible Prof.dr.eng. Sergiu Nedevschi

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	41.

2. Data about the subject

2.1	Subject name			Software Design							
2.2	Subject area				Com	Computer Science and Information Technology					
2.3	Course responsible/lecturer				Asso	Assoc. prof. dr. eng. Mihaela Dinsoreanu –					
						miha	mihaela.dinsoreanu@cs.utcluj.ro				
2.4	Teachers in cha	rge o	f app	olications							
2.5	Year of study	III	2.6	Semester	6	2.7	Assessment	exam	2.8	Subject category	DS/OB
	_										

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hou	rs / v	veek.]	[hours	s / se	mes	ter]		
			S	L	P		S	L	P			
6	Software Design	2		2	1	28	-	28	14	34	104	4

3.1 Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4 Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Individual study							Hours
Manual, lecture material and notes, bibliography							
Supplementary study in the library, online and in the field							5
Preparation for seminars/laboratory works, hor	mework, r	eports	, portfolios, essays				10
Tutoring							4
Exams and tests							
Other activities							

3.7	Total hours of individual study	34
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

	1 \ 11 1	,
4.1	Curriculum	Programming Techniques, Software Engineering
4.2	Competence	

5. Requirements (where appropriate)

	5. Reduirements (where appropriate)					
5.1	For the course					
5.2	For the applications					

6. Specific competences

sional	C3 - Problems solving using specific Computer Science and Computer Engineering tools C3.1 Identifying classes of problems and solving methods that are specific to computing systems C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 Applying solution patterns using specific engineering tools and methods C3.4 Evaluating, comparatively and experimentally, the available alternative solutions for performance optimization C3.5 Developing and implementing informatic solutions for concrete problems
Cross	N/A

/. DI	scipline objectives (as results from the	key competences gainea)
7.1	General objective	Understand and model requirements, analyse and design appropriate solutions
7.2	Specific objectives	 Identify the most relevant functional and non-functional requirements of a software system and to document them Design and motivate software architecture for (large scale) software systems Recognize and apply major software architectural styles, design patterns, and frameworks Describe a software architecture using various documentation approaches and architectural description languages Generate architectural alternatives for a problem and select among them

8. Contents

	ecture (syllabus)	Tanahina mathada	Notes
8.1. L		Teaching methods	Notes
1	Introduction to OO Programming and Methodologies	Face-to-Face	
2	Advanced UML (constraints modeling)	lecture,	
3	Architectural Design (Architectural Styles)	Powerpoint slides	
4	Business logic architectural patterns		
5	Data Access architectural patterns		
6	Midterm exam		
7	OO design		
8	Applying Design Patterns		
9	Applying Design Patterns		
10	Class Design Principles		
11	Package design Principles		
12	GRASP		
13	Service oriented architectures		
14	Software Design Quality metrics		

Bibliography

- 1. Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development (3rd Edition), Prentice Hall, 2004, ISBN: 0131489062
- 2. Grady Booch, James Rumbaugh, Ivar Jacobson, Unified Modeling Language User Guide (2nd Edition), Addison-Wesley, 2005, ISBN: 0321267974
- 3. Martin Fowler, Scott Kendal. UML Distilled, Third Edition, Addison-Wesley, 2003. ISBN: 0321193687
- 4. Erich Gamma, et all, Design patterns : elements of reusable object-oriented software, Addison Wesley, 1995, ISBN: 0201633612
- 5. Course materials published at https://users.utcluj.ro/~dinso/PS2014

8.2.	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1	Java Database Connectivity	Face-to-Face	
2	Java Graphical Interfaces (Swing)	tutoring,	
3	Java Networking	additional	

4	Java Applets	materials	
5	Design Patterns Implementation (Creational)		
6	Design Patterns Implementation (Structural)		
7	Design Patterns Implementation (Behavioral)		
8	UML – Use-Case Model		
9	Analysis Models		
10	Design Models		
11	Deployment Model		
12	Applying GRASP		
13	Applying GRASP		
14	Test		

Bibliography

Course materials published at https://users.utcluj.ro/~dinso/PS2014

Java tutorial - docs.oracle.com/javase/tutorial/

C# tutorial – msdn.microsoft.com

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

ACM Curriculum compliant course

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Ability to understand requirements,		Written exam		60%
		analyse alternative solutions and				
		design an appropriate solution				
Applications		Analyse requirements and		Periodic		40%
		alternative solutions, design an		presentations of the		
		appropriate solution and implement		required deliverables		
		it in either java or C#.				
10.4 Minimum	stanc	lard of performance				
Grade of each lab assignment >= 5						
Grade of each project deliverable >=5						
Grade of the fir	nal ex	am >=5				

Course responsible Assoc.prof.dr.eng. Mihaela Dinsoreanu

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	42.

2. Data about the subject

2.1	Subject name					Intell	igent Systems					
2.2	Subject area				Com	Computer Science and Information Technology						
2.3	3 Course responsible/lecturer				Prof.	Prof. dr. eng. Leția Ioan Alfred – Ioan.Alfred.Letia@cs.utcluj.ro						
2.4	Teachers in charge of applications				Lect. drd. eng. Razvan Slăvescu – Razvan.Slavescu@cs.utcluj.ro							
						As. drd. eng. Anca Marginean – Anca.Marginean@cs.utcluj.ro					j.ro	
2.5	Year of study	III	2.6	Semester	6	2.7	Assessment	exam	2.8	Subject category	DS/OB	

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hou	rs / v	veek.]	[hours	s / se	mes	ter]		
			S	L	P		S	L	P			
6	Intelligent Systems	2		2		28	-	28	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours
Manual, lecture material and notes, bibliograp	hy						18
Supplementary study in the library, online and	in the fie	ld					5
Preparation for seminars/laboratory works, how	mework,	reports	, portfolios, essays				10
Tutoring							6
Exams and tests							9
Other activities							0

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

	1 \ 11 1	,
4.1	Curriculum	Logic Programming, Functional Programming
4.2	Competence	Fundamentals of Computer Programming

5. Requirements (where appropriate)

_		. Itequirements (where appropria	
	5.1	For the course	Projector, Computer
Ī	5.2	For the applications	Computers with Linux, Specific Software

6. Specific competences

	C6 – Design of intelligent systems (4 credits)
	C6.1 – Describing the components of intelligent systems
na	C6.2 – Usage of specific instruments of the domain for explaining and understanding the functioning of intelligent
sio	systems
Professional competences	C6.3 – Application of principles and basic methods for the specification of solutions totypical problems using
Pro	intelligent systems
I o	C6.4 – Choosing criteria and methods for the evaluation of quality, performance and limits of intelligent systems
	C6.5 – Development and implementation of professional designs for intelligent systems
	N/A
ces	
ss	
Cross	
5	

7. 1	scipinic objectives (as results from the	ne y competences gamea)
7.1	General objective	Knowledge of representation and reasoning of fundamental problems of intelligent systems
7.2	Specific objectives	Fundamental methods for basic representations in intelligent systems:
		uncertainty, learning, communication

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction.	Slides, Algorithms,	
2	Uncertainty: inference using full joint distributions, Bayes' rule and its use.	Quality of	
3	Probabilistic Reasoning: semantics of Bayesian networks, efficient	solutions,	
	representation, exact inference, approximate.	Exceptions,	
4	Probabilistic Reasoning over Time: hidden Markov models, dynamic Bayesian	Limits in the	
	networks.	representation of	
5	Making Simple Decisions: utility functions, decision networks, value of	the real world	
	information.		
6	Making Complex Decisions: value iteration, policy iteration, partially observable		
	MDPs, game theory.		
7	Learning from Observations: learning decision trees, ensemble learning.		
8	Knowledge in Learning: explanation-based, relevance information, inductive		
	logic programming.		
9	Statistical Learning Methods: hidden variables, instance-based, neural networks,		
	kernel machines.		
10	Reinforcement Learning.		
11	Association analysis: frequent itemset generation, rule generation, compact		
	representation of frequent itemsets, alternative methods of generating frequent		
	itemsets, FP-growth algorithm.		
12	Communication: syntactic analysis, semantic interpretation.		
13	Perception, representation and action in multi-agent systems.		
14	Overview on Intelligent Systems: Present and Future.		
Biblio	graphy		

- Artificial Intelligence: A Modern Approach: Russell, Norvig, Prentice Hall, 2002
 Tan, Steinbach, Kumar: Data Mining: Association Analysis, 2004

8.2.	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1	Introduction to the documentation for the assignment		
2	Studying the documentation for the assignment		
3	Studying the design of the tool	Platform,	
4	Practicing the exercises provided in the archive	Documentation,	
5	Understanding the main parts of the software	Testing,	
6	Running the system by tracing at high level	Examples,	
7	Mastering the running of the system and the examples provided	New examples	
8	Conceptual design of new examples		
9	Code for the new examples		

10	Testing and debugging the new cases	
11	Measuring the performance of the system	
12	Documenting the new scenarios	
13	Comparison of the differences between the cases developed and those provided	
14	Final evaluation of the exercises developed	
Bibli	ography	
	1. Various Intelligent Systems Tools from the WWW.	

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course outline represents the most known and used one in the world methods for intelligent systems, continuously assessed by the research community in the world regarding its influence and use in software technology.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course		Problems and theoretical concepts		Written exam		80%	
Applications		Usage of specific tools on the		Evaluation in the		20%	
		examples developed and tested by		laboratory			
		the students					
10.4 Minimum standard of performance							
Representation of knowledge and its use in solving specific intelligent systems problems using specific tools							

Course responsible Prof.dr.eng. Ioan Alfred Letia

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	43.

2. Data about the subject

2.1	Subject name			Practical Placement							
2.2	Subject area			Computer Science and Information Technology							
2.3	Course responsible/lecturer			Asso	Assoc. prof. dr. eng. Tiberiu Marita						
2.4	Teachers in cha	rge o	f app	lications		As de	ecided by the su	ıpervisor			
2.5	Year of study	III	2.6	Semester	6	2.7	Assessment	Verification	2.8	Subject category	DID/OB

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]			[hours / semester]				ter]			
			S	L	P		S	L	P			
6	Practical Placement	-	-	-	-	-	-		-	240	240	8

3.1 Number of hours per week	-	3.2	of which, course	-	3.3	applications	-	
3.4 Total hours in the teaching plan	-	3.5	of which, course	-	3.6	applications	-	
Individual study								
Manual, lecture material and notes, bibliography								
Supplementary study in the library, online and in the field								
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								
Tutoring								
Exams and tests								
Other activities								

3.7	Total hours of individual study	240
3.8	Total hours per semester	240
3.9	Number of credit points	8

Pre-requisites (where appropriate)

4	1.1	Curriculum	N/A
	1.2	Competence	N/A

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Compulsory attendance (minimum 240 h)

6. Specific competences

C2 Designing hardware, software and communication components (2 credits)

C2.1 Describing the structure and functioning of computational, communication and software components and

Systems
C3 Problems solving using specific Computer Science and Computer Engineering tools (2 credits)
C3.1 Identifying classes of problems and solving methods that are specific to computing systems
C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results results

C3.3 Applying solution patterns using specific engineering tools and mehods

C3.5 Developing and implementing informatic solutions for concrete problems

C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits)

C5.5 Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

CT2 Identifying, describing and conducting processes in the projects management field, assuming different roles inside the team and clearly and concisely describing, verbally or in writing, in Romanian and in an international language, the results from the activity field. (2 credits)

7. Discipline objectives (as results from the key competences gained)

	1. Biscipinie objectives (as results from the key competences gamea)						
7.1	General objective	Application of fundamental and applied knowledge gained in the projects development within					
	-	a specialized company or research team (theme set by the project manager)					
7.2	Specific objectives	Acquaintance and student involvement in every development stage of a hardware / software /					
		communication project and connected aspects of design activities:					
		- Analysis and documentation					
		- Study and acquaintance with specific design tools					
		- Design, implementation, testing and validation of the project					
		- Preparation of documentations, technical reports					
		- Team work and communication skills					
		- Project management activities					

8. Contents

	ecture (syllabus)	Teaching methods	Notes
0.1. L			Notes
I	Not applicable	N/A	
Biblio	graphy		
8.2. <i>A</i>	Applications	Teaching methods	Notes
1	• study of the product to be realized		
	 analysis of the potential methodologies and/or technologies 		
	 preparation of the project specifications 	N/A	
	• implementation and deployment of the hardware or software system	IN/A	
	 product testing and validation 		
	product documenting		

Bibliography

For the project development, the draft bibliography is the one recommended by the project leader from the company or by the research team at which the implementation is performed and the one resulted in the documenting phase.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline provides education and training of the students at the workplace site, with benefits for both sides. Students are familiarized with the working and professional requirements needed to work in a company, and companies have the opportunity to shape students to facilitate their employment after graduation (to reduce training expenses / training). Also it aims to increase cohesion between academia and employment in a priority area in terms of national and European level in order to improve the skills of employees and to prepare and maintain them in the labor market in a particularly dynamic and competitive domain (mainly existing competition with Eastern European countries and Asia - India and China).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade			
Course		N/A		N/A		N/A			
Applications		Attendance, activity, tutor		Colloquy		100%			
		assessment							
10.4 Minimum standard of performance									
Development of a hardware / software / communication engineering project									

Course responsible Assoc.prof.dr.eng. Tiberiu Marita