1. Data about the program of study

	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	30.

2. Data about the subject

2.1	Subject name			Desig	Design with Microprocessors							
2.2	Subject area				Com	Computer Science and Information Technology						
2.3	3 Course responsible/lecturer				Conf	Conf. dr. eng. Tiberiu Marita – tiberiu.marita@cs.utcluj.ro						
2.4	2.4 Teachers in charge of applications			As. dr. eng. Mihai Negru – mihai.negru@cs.utcluj.ro								
2.5	Year of study	Ш	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject category	DID/OB	

3. Estimated total time

Sem.	Subject name	Lecture	Apj	plicat	ions	Lecture	App	licat	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]								
			S	L	Р		S	L	Р			
5	Design with Microprocessors	2	-	1	1	28	-	14	14	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study								Hours
Man	ual, lecture material and notes, bibliograph	hy						28
Supp	lementary study in the library, online and	in the fie	ld					14
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							28	
Tuto	ring							0
Exam	is and tests							4
Othe	r activities							0
3.7	Total hours of individual study		74					
3.8	Total hours per semester		130					
3.9	Number of credit points		5]				

3.8	Total hours per semester	130
3.9	Number of credit points	1

	4. Pre-requisites (where appropriate)						
4.1	Curriculum	Logic design, Computer architecture					
4.2	2 Competence VHDL design, assembly language and C programming						

	5. Requirements (where appropriate)							
5.1	For the course	Black-board/ White-board, projector, computer						
5.2	For the applications	Computer, AVR Studio, Cerebot development boards and Digilent Pmods						

	C2 – Designing hardware, software and communication components (2 credits)
al	C2.1 – Describing the structure and functioning of computational, communication and software components and
ion	systems
essi	$\tilde{C2.2}$ – Explaining the role, interaction and functioning of hardware, software and communication components C2.5 - Implementing hardware, software and communication systems
rofe	C2.5 - Implementing hardware, software and communication systems
	C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and

	 communication systems (3 credits) C5.2 - Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field C5.5 - Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
Cross competences	N/A

7. Discipline objectives (as results nom the keycompetences guinea)						
7.1	General objective	Knowledge, understanding and use of concepts like microprocessor/ microcontroller, bus, memory system, data transfer methods, interface circuits and peripheral devices interfacing, analysis and design of microprocessor systems.				
7.2	Specific objectives	 To achieve the main objective, specific objectives are pursued: Knowledge of microprocessors and microcontrollers features and capabilities: hardware capabilities, instruction set architecture, assembly language, and programming solutions. Knowledge of hardware components used with the microprocessors: electrical and logical characteristics, connection modes. Development of skills to find solutions based on microprocessors or microcontrollers for real problems with average complexity. Acquaintance with microcontroller development boards and their software programming tools. 				

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Lecture Overview. Introduction to MP based systems (AVR MCU family).		
2	AVR registers and instructions.	Oral, blackboard and multimedia, interactive	
3	AVR I/O ports and interrupts.		
4	AVR timer-counters. Generating signals using timers.		N/A
5	Serial communication interfaces: SPI, UART, PS2.		
6	Analogue signal processing using A/D converters.		
7	Microcontroller based applications.	teaching style,	
8	Architecture and instruction set of the Intel 8086 microprocessor.	consultations,	
9	Interfacing the I/O devices to 8086. I/O data transfer.	involvement of students in	
10	The interrupt system of 8086, handling the interrupts.		
11	DMA transfer.	research / design.	
12	Interfacing memories to 8086.		
13	Simple I/O interfaces. Parallel interfaces		
14	Multiprocessor systems.		

Bibliography

1. B. B. Brey, "INTEL Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Prentium ProProcessor, Pentium II, III, 4", ed. 7, Prentice Hall, 2005 2. S. Nedevschi, "Microprocessoare", Editura UTCN, 1994.

- M.A. Mazidi,S. Naimi, S. Naimi, AVR Microcontroller and Embedded Systems: Using Assembly and C, Prentice 3. Hall, 2010, ISBN 9780138003319.

Online:

http://users.utcluj.ro/~tmarita/PMP/PMPcurs.htm 4.

8.2. A	pplications (Laboratory, Projects)	Teaching methods	Notes
Labo	atory		
1	Introduction of the AVR Studio development tool, and of the Cerebot	Presentation on	
	development boards.	the blackboard,	N/A
2	Interfacing the peripheral devices. Using the seven segment display.	experiments on	

3	Using the timers. Signal generation using timers.	microcontroller
4	Serial interfaces. Communication between Cerebot and the PC.	development
5	The SPI interface. Communication between Cerebot boards. Communication to	boards (Cerebot)
	SPI-capable peripheral devices.	use of specialized
6	Interfacing the D/A, A/D converters.	IDE design tools
7	Applications with sensors and actuators.	(AVR Studio),
Proje	cts	involvement of
1	Logic design with 8086, EPROM, SRAM	students in
2	Logic design with 8086, DRAM, flash	research / design.
3	Microcontroller application design: audio signal processing.	
4	Microcontroller application design: sensor monitoring, storing and analyzing	
	sensor data.	
5	Microcontroller application design: environment perception, motor control.	
6	Microcontroller application design: communication system.	
7	Project assessment.	
Biblio	ography	

Bibliography

- 1. Atmel ATmega64L 8 bit AVR Microcontroller datasheet, http://www.atmel.com/Images/Atmel-2490-8-bit-AVR-Microcontroller-ATmega64-L datasheet.pdf
- 2. Abdul Maalik Khan, AVR Project Book, http://www.digisoft.com.pk/products/avr-project-book
- 3. Digilent Inc., Rerebot-II, Reference manual, http://digilentinc.com/Data/Products/CEREBOT-II/Cerebot II rm RevB.pdf.

Online:

http://users.utcluj.ro/~tmarita/PMP/PMPcurs.htm 4.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course is in the Computer and Information Technology field. Its contents combine fundamentals with specific aspects of the used hardware and software tools, accustoming students with the design principles for microprocessor based systems. The course content was discussed with other universities in the country and abroad, and in conjunction with products /development tools offered by companies in Romania, Europe and the USA (e.g. Digilent, Atmel) and is rated by the Romanian government agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Testing theoretical knowledge and problem solving skills		Written exam		50 %
Applications		Practical skills for problem solving and implementation of specific problems for applications design. Attendance and activity		Colloquium, project evaluation		50 %
10.4 Minimum standard of performance						

Modeling and implementation of typical engineering problems using the theoretical models and applicative tools specific to the domain.

Course responsible Conf.dr.eng. Tiberiu Marita

1. Data about the program of study

	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	32.

2. Data about the subject

2.1	Subject name			Func	Functional Programming						
2.2	Subject area			Com	Computer Science and Information Technology						
2.3	Course responsible/lecturer				Asso	Assoc. prof. eng. Adrian Petru Groza – <u>Adrian Groza@cs.utcluj.ro</u>					
2.4	Teachers in charge of applications				Lect. dr. eng. Radu Slavescu – <u>Radu.Razvan.Slavescu@cs.utcluj.ro</u>						
					dr. eng. Anca	Mărginean – <u>an</u>	ca.ma	rginean@cs.utcluj	<u>.ro</u>		
2.5	Year of study	III	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject category	DID/OB
	-										

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ons	Individual study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	L	Р			
5	Functional Programming	2	-	2	-	28	•	28	-	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Indiv	idual study							Hours
Manu	al, lecture material and notes, bibliograph	hy						28
Supp	lementary study in the library, online and	in the field	ld					14
Prepa	ration for seminars/laboratory works, how	mework, 1	reports	, portfolios, essays				28
Tuto	ring							4
Exam	s and tests							
Other	r activities							
3.7	Total hours of individual study		74					
3.8	Total hours per semester		130]				
3.9	Number of credit points		5]				

4. Pre-requisites (where appropriate)

	" The foldulates (where uppropriate)					
4.1	Curriculum					
4.2	Competence					

	5. Requirements (where appropriate)						
5.1	For the course	Basic notions of programming					
5.2	For the applications	Linux					

	C2 Designing hardware, software and communication components (4 credits)
	C2.1 Describing the structure and functioning of computational, communication and software components and
ces	systems
ene	C2.2 Explaining the role, interaction and functioning of hardware, software and communication components
pet	C2.3 Building the hardware and software components of some computing systems using algorithms, design methods,
om	protocols, languages, data structures, and technologies
lc	C2.4 Evaluating the functional and non-functional characteristics of the computing systems using specific metrics
Professional competences	
ssic	C4 Improving the performances of the hardware, software and communication systems (1 credit)
ofe	C4.1 Identifying and describing the defining elements of the performances of the hardware, software and
Pro	communication systems
	C4.3 Applying the fundamental methods and principles for increasing the performances of the hardware and
	software
	N/A
ces	
Cross	
Crc	
ion	

	sepmie objectives (us results nom the	
7.1	General objective	Increasing the ability to develop more correct and concise code
7.2	Specific objectives	Writing better code with the concepts introduced by functional programming: high order functions, lazy evaluation, lambda calculus, infinite structure.

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction. Programming Paradigms		
2	Basic concepts of programming in Hugs, ML, Lisp: functions, constants,		
	primitive data types, recursion, tuples, infix operators, evaluation.		
3	Basic concepts: local declarations, polymorphism.		
4	Lists: list construction, basic operations on lists.	,	
5	Lists: polymorphic equality.		
6	Lists: list operators (generators, filters, list expressions).	00	
7	Trees: alternative data, pattern matching, exceptions, binary trees (list-tree	Slides, Various student engagement techniques New examples Quick individual work (1 minute) Homework after each class dicusssed at the beginning of the next class.	
8	conversions). Trees: binary trees (binary search trees, AVL balanced trees, examples (operations on sets)).	Quick individual work (1 minute)	
9	Trees: binary trees (examples (Huffman codes)), propositional reasoner (example).	each class	
10	Higher-order functions: anonymous functions, partial application, functions as data, data as functions, combinator functions, functionals for lists (list operator style, style without lists).	Various student engagement techniques New examples Quick individual work (1 minute) Homework after each class dicusssed at the beginning of the next class.	
11	Infinite data: lazy evaluation, unbounded objects, circular structures.		
12	Transformation and reasoning: structural induction, equivalence of functions, structural induction on trees, induction on number of nodes, general principle of induction.		
13	Lambda calculus: Lambda notation, conversions, combinators.		
14	Para-functional programming: basic language, mapped expressions, eager expressions.		
Biblio	graphy		
	Haskell - A Purely Functional Language, http://www.haskell.org/		
	I.A. Leția, Programare funcțională, Ed. UTPres, UTCN, 1996.		
	H. Conrad Cunningham, Notes on Functional Programming with Haskell, 2007		
4.]	Raul Rojas, A Tutorial Introduction to the Lambda Calculus, FU Berlin, WS-97/98		
8.2. /	Applications (Laboratory)	Teaching methods	Notes
1	Lisp objects, form evaluation, primitive Lisp functions.	New examples	

2	Internal representation, control of evaluation, function definition. Recursion and	Tracing	
	iteration.	algorithms	
3	Scope of variables, iterative forms. LAMBDA-expressions, higher-order	Midterm	
	functions, mapping.	assessment	
4	Association lists, properties, arrays and structures. Macrodefinitions, functions as	Miniprojects	
	data, surgery.		
5	Trees in Lisp. Graphs and backtracking.		
6	Pattern matching. Symbolic processing.		
7	Lisp microinterpreter. Review of programming in Lisp, in preparation for the lab		
	test.		
8	Lab test (Programming in Lisp).		
9	ML Lists, Recursion,.		
10	ML type checking		
11	ML Trees		
12	Haskell – High order functions		
13	Haskell -Lazy evaluation, circular lists, infinite lists.		
14	Lab test (Programming in ML and Haskell).		

Bibliography

1. I.A. Leția, E.Șt. Chifu, C. Cenan, Programare funcțională. Îndrumător de laborator, Ed. Casa cărții de știință, 1999.

2. David S. Touretzky, Common Lisp: A Gentle Introduction to Symbolic Computation, The Benjamin/Cummings Publishing Company, Inc, 1989

3. Andrew Cumming, A gentle introduction to ML, Napier University, Edinburgh, 2013

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the class is similar to the contents taught at other international universities. The students are encouraged to indentify elements of functional programming in the current practice of IT companies running at the local level.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course Understanding functional			Midterm assessment,		60		
		programming elements, Class		Writing exam			
		participation, Homework					
Applications	Applications Quantity and quality of code in			Midterm assessment,		40	
				Practical exam			
10.4 Minimum standard of performance							
TT 1 / 1	1	- 1itin - f th - f- 11int-	D	· ILLOI E			

Understanding and code writing for the following concepts; Recursion, High Order Functions, Pattern Matching

Course responsible Assoc. prof. eng. Adrian Petru Groza

1. Data about the program of study

	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	33.

2. Data about the subject

2.1	Subject name S			Softv	Software Engineering							
2.2	Subject area			Com	Computer Science and Information Technology							
2.3	Course responsible/lecturer			Prof.	Prof. dr eng. Eneia Nicolae Todoran – Eneia. Todoran@cs.utcluj.ro							
2.4	Teachers in charge of applications				Asso	Assoc.prof. dr. Mitrea Paulina – Paulina.Mitrea@cs.utcluj.ro,						
		-				Sl. d	lr. eng. Mitrea l	Delia Delia.Mitr	ea@c	<u>s.utcluj.ro</u>		
2.5	Year of study	III	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject category	DID/OB	
	-											

3. Estimated total time

Sem.	Subject name	Lecture	Apj	olicat	ions	Lecture	App	licat	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]				ter]				
			S	L	Р		S	L	Р			
5	Software Engineering	2	-	1	1	28	-	14	14	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Indiv	idual study							Hours
Man	ual, lecture material and notes, bibliograph	hy						25
Supp	lementary study in the library, online and	l in the fie	ld					17
Supplementary study in the library, online and in the field Preparation for seminars/laboratory works, homework, reports, portfolios, essays Tutoring				17				
Tuto	ring							5
Exam	is and tests							10
Othe	r activities							0
3.7	Total hours of individual study		74					
3.8	Total hours per semester		130]				

5.0	rotar nouis per semester	
3.9	Number of credit points	

	4. Pre-requisites (where appropriate)						
4.1	Curriculum	Object Oriented Programming, Programming Techniques					
4.2	Competence	Competences acquired in the above disciplines					

5

	5. Requirements (where appropriate)					
5.1	For the course	Blackboard, projector, computer				
5.2	For the applications	Computers, specific software				

C3 - Problems solving using specific Computer Science and Computer Engineering tools (2 credits)
C3.1 - Identifying classes of problems and solving methods that are specific to computing systems
C3.1 - Identifying classes of problems and solving methods that are specific to computing systems C3.2 - Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their
C3.3 - Applying solution patterns using specific engineering tools and mehods C3.5 - Developing and implementing informatic solutions for concrete problems
C3.3 - Applying solution patterns using specific engineering tools and mehods
C3.5 - Developing and implementing informatic solutions for concrete problems
C4 - Improving the performances of the hardware, software and communication systems (1 credit)

	C4.2 - Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
	C4.4 - Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
	C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits)
	C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
	C5.5 - Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
es	N/A
Cross	
con	

7.1	General objective	The overall objective of discipline consists in the study and application of systematic, disciplined and quantifiable approaches in software systems development
7.2	Specific objectives	 Study and application of software development processes Understanding the specific activities of software engineering Knowledge of software engineering models Knowledge of specific tools that can assist software engineers in the specification, design and validation process Knowledge of methods for software modeling and performance analysis Application of processes, methods and tools in small to medium-sized software projects

8. Contents

8.1. Le	ecture (syllabus)	Teaching methods	Notes
1	Introduction and overview of the course		
2	Software development paradigms: basic paradigms ('waterfall', prototyping,		
	reusable components, formal methods), evolutionary paradigms (incremental		
	development, spiral model, concurrent engineering)		
3	Modern processes: the unified process, agile methods and extreme programming		
4	Basic activities (specification, development, validation, evolution): concepts, principles, processes		
5	Conventional methods: introduction to structured analysis and design		
6	Developing requirements: domain analysis, types of requirements, techniques for		
	gathering requirements, capturing requirements as use cases		
7	Modeling with classes: UML class diagrams, the process of developing class		
	diagrams, the semantics of UML class diagrams, implementing class diagrams in		
	Java		
8	Modeling interactions and behavior: UML interaction (sequence and		
	communication), state and activity diagrams. Software performance modeling		
	and analysis.		
9	Architecting and designing software: design principles (increase cohesion, reduce		
	coupling, etc.), architectural patterns (Multi-Layer, Pipe-and-Filter, etc.)		
10	Testing and inspecting to ensure high quality: testing techniques (equivalence		
	partitioning, path testing, etc.) and integration strategies (top-down, bottom-up,		
	scenario-based), inspections		
11	Use case driven development: use case specifications, analysis, design and		
	implementation to realize the use cases, testing the use cases		
12	Program specifications: pre and post assertions, well-founded induction,		

	declarative prototyping		
13	Software engineering based on formal methods: basic concepts, formal		
	specification languages, formal verification		
14	Model-based specification using Z: notation, schema calculus, methodology		
Biblio	graphy		
	1. I. Sommerville. Software Engineering (6 th , 7 th , 8 th , 9 th editions). Addison Wesley	/ (2001, 2004, 2006, 2	010).
	2. T. Lethbridge, R. Laganiere. Object-Oriented Software Engineering: Practice		
	UML and Java (2 nd edition). McGraw-Hill, 2005. http://www.lloseng.com.	5 1	C C
	3. E. Currie. <i>The essence of Z.</i> Prentice Hall, 1999.		
	4. PRISM manual, 2014. http://www.prismmodelchecker.org/manual/		
	5. E.N. Todoran. Inginerie software: studii in prototipizare si specificare formala.	Mediamira, Cluj-Napo	oca, 2006.
8.2.	Applications (Laboratory)	Teaching methods	Notes
1	OCSF – an object client-server framework for reuse oriented development	Č – Č	
2	Simple Chat - an instant messaging systembased on OCSF (1)		
3	Simple Chat - an instant messaging systembased on OCSF (2)		
4	Using software modeling CASE tools (1): UML use case, class and interaction		
	diagrams		
5	Using software modeling CASE tools (2): UML state, component and		
	deployment diagrams		
6	Using CASE tools for performance software modeling and analysis: PRISM,		
	PEPA		
7	Test cases design with JUnit		
The	project class attempts to simulate various aspects of the real world of software		
engi	neering. The students define the problem to be solved and the scope of the project		
unde	er the supervision of the teaching assistant. Working alone is permitted, but they are		
enco	uraged to work in teams. The students must employ the paradigms and the software		
deve	lopment methods that are presented in the taught course. They are expected to		
	er three iterations of the project with predefined deadlines. For a traditional		
	erfall' project the deadlines correspond to requirements specification, design, and		
the f	inal deliverable.		
Bibli	ography		

1. T. Lethbridge, R. Laganiere. Object-Oriented Software Engineering: Practical Software Development using UML and Java (2nd edition). McGraw-Hill, 2005. http://www.lloseng.com.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Software Engineering is a well-established discipline in Computer Science and Information Technology. In this course, students acquire basic knowledge related to software development (paradigms, methods and tools) and learn to apply systematic and quantifiable approaches in the development of software systems. Course content has been developed based on interaction with specialists in Software Engineering from Romania, Europe and Canada and has been rated by Romanian government agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade		
Course		Problem solving skills		Written examination		75%		
Applications		Software design and validation skills		Laboratory colloquium, Project assessment		25%		
10.4 Minimum standard of performance								
Development of a medium size software project using the skills taught in the Software Engineering course								

Course responsible Prof. dr. eng. Eneia Todoran

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	34.

2. Data about the subject

2.1	Subject name I			Intro	Introduction to Artificial Intelligence							
2.2	2 Subject area			Com	Computer Science and Information Technology							
2.3	Course respons	ible/l	ectui	er		Prof.	Prof. dr. eng. Leția Ioan Alfred – Ioan.Alfred.Letia@cs.utcluj.ro					
2.4	Teachers in cha	arge o	f app	olications		Assoc.prof. dr. eng. Groza Adrian – Adrian.Groza@cs.utcluj.ro						
		-				Lect.	dr. eng. Margi	nean Anca – A	nca.N	larginean@cs.utch	ıj.ro	
2.5	Year of study	III	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject category	DID/OB	

3. Estimated total time

S	lem.	Subject name	Lecture	Apj	olicat	ions	Lecture	App	licati	ons	Individual study	TOTAL	Credit
			[hours / week.]		[hours / semester]								
				S	L	Р		S	L	Р			
	5	Introduction to Artificial Intelligence	2	-	2	-	28	-	28	-	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Indiv	idual study							Hours
Man	ual, lecture material and notes, bibliograpl	hy						18
Supp	lementary study in the library, online and	in the fie	ld					5
Prepa	aration for seminars/laboratory works, hor	mework, 1	reports	s, portfolios, essays				10
Tuto	ring							6
Exam	s and tests							9
Othe	r activities							0
3.7	Total hours of individual study		48					
3.8	Total hours per semester		104					
3.9								

3.9 Number of credit points	
-----------------------------	--

	4. Pre-requisites (where appropria	te)
4.1	Curriculum	Logic Programming, Functional Programming
4.2	Competence	Elementary fundamentals of programming

5. Requirements (where appropriate)						
5.1	For the course	Projector, Computer				
5.2	For the applications	Computers with Linux, Specific Software				

	C3 – Problems solving using specific Computer Science and Computer Engineering tools (1 credit)
	C3.1 – Identification of classes of problems and the methods to solve them characteristic of information systems
	C3.2 – Usage of interdisciplinary knowledge, patterns of solutions and tools, experimentation and interpretation of
	their results
	C3.3 – Aplication of solution patterns using engineering tools and methods
	C3.4 – Comparative evaluation, including experiments, of alternative solutions, to optimize performance
Se	C3.5 – Development and implementation of computational solutions for concrete problems
nce	
Professional competences	C5 – Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and
duu	communication systems (1 credit)
co	C5.1 - Stating the criteria relevant to quality, security and system interaction with the environment and human
nal	operator
sio	C5.2 - Usage of interdisciplinary knowledge for the adaptation of the informatic system to the requirements of the
fes	application domain
Pro	C5.3 – Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the
	computing systems
	C6 – Designing intelligent systems (2 credits)
	C6.1 – Describing the intelligent systems' components
	C6.3 – Applying the main methods and principles for specifying solutions for typical problems using intelligent
	systems
	C6.5 – Developing and implementing professional projects for intelligent systems
	N/A
es	
Cross	
Cross	
5	

7.1	General objective	Knowledge of representation and reasoning of fundamental problems of artificial intelligence
7.2	Specific objectives	Fundamental search methods, Usage of first-order logic and description logics, Basic planning representation and solving methods

8. Contents

8.1. Le	ecture (syllabus)	Teaching methods	Notes
1	Introduction.	Slides, Algorithms,	
2	Intelligent Agents: behavior, environments, structure.	Quality of	
3	Solving Problems by Searching: uninformed, searching with partial information.	solutions,	
4	Informed Search Methods and Exploration: heuristics, local search algorithms	Exceptions,	
	and optimization problems, local search in continuous spaces.	Limits in the	
5	Constraint Satisfaction Problems: backtracking, local search.	representation of	
6	Adversarial Search: alpha-beta pruning, imperfect, real-time decisions, games	the real world,	
	that include an element of chance.		
7	Logical Agents: knowledge-based agents, propositional logic, effective		
	propositional inference.		
8	First-Order Logic.		
9	Inference in First-Order Logic: forward, backward chaining, resolution.		
10	Knowledge Representation.		
11	Description logics: description languages, terminologies, world description, inferences, reasoning algorithms, language extensions		
12	Planning: partial-order planning, planning graphs.		
13	Planning and Acting in the Real World: schedules and resources, hierarchical		
	network planning, conditional planning, execution monitoring and re-planning,		
	continuous planning.		
14	Course Overview.		
Bibliog	graphy		

8.2. /	Applications (Laboratory)	Teaching methods	Notes
1	Introduction to the documentation for the assignment		
2	Studying the documentation for the assignment		
3	Studying the design of the tool		
4	Practicing the exercises provided in the archive		
5	Understanding the main parts of the software	Dlatfarm	
6	Running the systemby tracing at high level	Platform,	
7	Mastering the running of the systemand the examples provided	Documentation,	
8	Conceptual design of new examples	 Testing, Examples, 	
9	Code for the new examples	New examples	
10	Testing and debugging the new cases	New examples	
11	Measuring the performance of the system		
12	Documenting the new scenarios		
13	Comparison of the differences between the cases developed and those provided		
14	Final evaluation of the exercises developed		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The textbook is one of the most known and used one in the world of the best universities, continuously assessed by the university and research community in the world regarding its influence and use in the software oriented companies.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade		
Course		Problems and theoretical concepts		Written exam		80%		
Applications		Usage of specific tools on the		Evaluation in the		20%		
		examples developed and tested by		laboratory				
	the students							
10.4 Minimum standard of performance								
Representation	Representation of knowledge and its use in solving specific problems using specific tools							

Course responsible Prof. dr. eng. Ioan Alfred Letia

1. Data about the program of study

	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	35.

2. Data about the subject

2.1	1 Subject name			Econ	Economic legislation						
2.2	2.2 Subject area			Computer Science and Information Technology							
2.3	2.3 Course responsible/lecturer				Lect.	Lect. dr. jur. Roxana Cordos					
2.4	Teachers in cha	arge o	f app	olications		-					
2.5	Year of study	III	2.6	Semester	5	2.7	Assessment	Colloquium	2.8	Subject category	DC/OB
	-							-			

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hou	rs / v	week.]	[hour	s / se	emes	ter]		
			S	L	Р		S	L	Р			
5	Economic legislation	2	-	-	-	28	-	-	-	24	52	2

3.1 Number of hours per week	2	3.2	of which, course	2	3.3	applications	-
3.4 Total hours in the teaching plan	28	3.5	of which, course	28	3.6	applications	-
Individual study							Hours
Manual, lecture material and notes, bibliograph	hy						18
Supplementary study in the library, online and	in the fie	ld					2
Preparation for seminars/laboratory works, how	mework,	reports	, portfolios, essays				
Tutoring							2
Exams and tests							2
Other activities							
3.7 Total hours of individual study		24					
3.8 Total hours per semester		52					
3.9 Number of credit points		2					

L	Number	orcicult	pomis

4. Pre-requisites (where appropriate)

4.1	Curriculum	Not the case
4.2	Competence	Not the case

	5. Requirements (where appropria	te)
5.1	For the course	Not the case
5.2	For the applications	Not the case

CT3 – Demonstrating the spirit of initiative and action for updating professional, economical and organizational culture knowledge (2 credits)

Cross competences

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Applying the general and specific knowledge of technical culture in solving
		the business issues in this field
7.2	Specific objectives	Knowing the basic legisltion in the field and finding solution for different
		types of problems.

8. Contents

8.1. I	Lecture (syllabus)	Teaching methods	Notes
1	General notions of economic legislation.		
2	The merchants		
3	Commerce acts		
4	Commercial contracts – general notions		
5	Classification of contracts		
6	The contract of sale	Modern teaching	
7	The contract of transportation	methods	
8	The contract of storage, mandate, renting		
9	The contract of leasing		
10	General rules applied to commercial societies		
11	The constitutive act of a firm		
12	Society on shares		
13	The society with limited responsibility		
14	The society in collective name, with simple sleeping partners and on shares		
	sleeping partners.		
Biblio	ography		
	1. S.Angheni, M.Volonciu, C.Stoica, M.Lostun, Drept comercial, Ed. Oscar Print,		
	2. I.L.Georgescu, I.Bacanu, Drept comercial român, vol.II, Ed.Lumina Lex, Bucun		
	3. B. Stefanescu, O.Capatâna, Dictionar juridic de comert exterior, Bucuresti, 1986		
	4. S.Carpenaru, Drept comercial, Ed.All, Bucuresti, 2007		
	5. Bodu S., Drept commercial completat cu notiuni fundamentale de drept civil- cu	urs universitar, 2005 (l	biblioteca
~ •	UTCN)	<u> </u>	T
8.2.	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1	-		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The students will have the possibility to learn how to put into practice a business idea in the studied domain.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade			
Course		Colloquium		Written test		100%			
Applications									
10.4 Minimum standard of performance									
Grade 5									

Course responsible Lect. dr. jur. Roxana Cordos

6. Data about the program of study

	5. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	36.

7. Data about the subject

2.1	Subject name			Grap	Graphical Processing Systems						
2.2	2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Prof.	Prof. dr. eng. Gorgan Dorian – <u>dorian.gorgan@cs.utcluj.ro</u>					
2.4	Teachers in charge of applications				As. drd. eng. Melenti Cornelia, S.l. dr. eng. Bacu Victor,						
						{corr	nelia.melenti, v	ictor.bacu}@cs	.utclu	j.ro	
2.5	Year of study	III	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject category	DID/OB

8. Estimated total time

Sem.	Subject name	Lecture	Apj	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	L	Р			
5	Graphical Processing Systems	2	-	2	-	28	-	28	-	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study								
Manual, lecture material and notes, bibliography								20
Supplementary study in the library, online and in the field							6	
Prepa	aration for seminars/laboratory works, ho	mework, 1	reports	, portfolios, essays				10
Tuto	ring							3
Exam	s and tests							9
Other activities							0	
3.7	Total hours of individual study		48					•
3.8	Total hours per semester		104					

9. Pre-requisites (where appropriate)

Number of credit points

4.1	Curriculum	Computer programming (C language)
		Elements of Computer Assisted Graphics
4.2	Competence	Applications development in C programming language, Graphical systems architecture, The graphical processing pipeline

4

10. Requirements (where appropriate)

5.1	For the course	Projector, computer
5.2	For the applications	Laboratory attendance is mandatory
		Study of laboratory materials from the server

6. Specific competences

3.9

	C4 – Improving the performances of the hardware, software and communication systems (4 credits)
Professional competences	C4.1 – Identifying and describing the defining elements of the performances of the hardware, software and
ene	communication systems
pet	C4.2 - Explaining the interaction of the factors that determine the performances of the hardware, software and
mc	communication systems
l ce	C4.3 – Applying the fundamental methods and principles for increasing the performances of the hardware, software
na	and communication systems
ssic	C4.4 – Choosing the criteria and evaluation methods of the performances of the hardware, software and
ofe	communication systems
Pro	C4.5 – Developing professional solutions for hardware, software and communication systems based on performance
	optimization
	N/A
ces	
Cross	
Crc	
noi	
0	

	(* 2 merpinie " objectives (us results noni the wey competences gamea)					
7	.1 General objective	Study and experiment with the 3D photorealistic algorithms. Development of 2D and 3D graphics applications.				
7	2 Specific objectives	 Creation of the graphic model of a 3D scene of objects Implementation and usage of the fundamental 3D graphics algorithms that can be found in the core of a graphic system Development of graphic applications in a high-level programming language (C, C++) based on graphics libraries (ex. OpenGL) Implementation of the main phases of the graphics transformation pipeline, in order to transform a 3D scene into an image. 				

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Computational graphics		
2	Hidden line and surface removal algorithms. Part 1	New multimedia	
3	Hidden line and surface removal algorithms. Part 2	teaching	
4	3D objects modeling	approaches will be	During the semester and before each exam there are
5	Particles based models	used in classes.	
6	Polygonal objects rendering. Part 1		
7	Polygonal objects rendering. Part 2	The course is	
8	Illumination models. Local reflection model. Phong model	interactive and	a few
9	Shadow computation	includes	preparation hours planned.
10	Texture mapping. Part1	demonstrations	
11	Texture mapping. Part2	that exemplify	
12	Global reflection models. Ray-tracing algorithm	graphical methods	
13	Global reflection models. Radiosity algorithm	and algorithms.	
14	Graphical animation		

Bibliography

- 4. Watt A., "3D Computer Graphics". Addison-Wesley, 1998.
- 5.
- 6.
- Watt A., Policarpo F.:"3D Games. Real-time Rendering and Software Technology". Addison-Wesley, 2001. Akenine-Moller T., Haines E., "Real-Time Rendering". A.K. Peters 2nd edition, 2002. Foley J.D., van Dam, A., Feiner, S.K., Hughes, J.F., "Computer Graphics. Principles and Practice". Addison-7. Wesley Pblishing Comp., 1992.
- 8. Gorgan D., Rusu, D., "Elemente de Grafică pe Calculator". Cluj-Napoca, 1996.

In virtual library

- Curse and practical works, http://cgis.utcluj.ro 1.
- 2. Course resources, http://cgis.utcluj.ro/didactic

8.2. A	Applications (Laboratory)	Teaching methods	Notes
1	Introduction. Administrative	Documentation	Each student
2	OpenGL application framework	and examples will	will have to

3	Graphics primitives in OpenGL	be available to the	develop a				
4	Graphics transformations in OpenGL	students, prior to	specific				
5	Data model and file formats	the laboratory	project based				
6	Projections and clipping planes in OpenGL	classes, on a	on the				
7	Lighting model in OpenGL	dedicated server.	knowledge				
8	Texture mappings in OpenGL	The students will	acquired at the				
9	Shadow computation in OpenGL applications	work	laboratory				
10	Graphical User Interface in OpenGL Applications - Part 1	independently but	hours.				
11	Graphical User Interface in OpenGL Applications - Part 2	will also be					
12	Ray tracing algorithm	assisted by the					
13	Bump mapping	teacher.					
14	Assessment						
Bibliography							
In vi	In virtual library						
1	1. Curse and practical works, <u>http://cgis.utcluj.ro</u>						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline is integrated into the Computers and Information Technology domain. The content is classic, yet modern, and introduces to students the fundamentals of 3D graphic systems and algorithms. The content of this discipline has been aligned with the information presented in similar disciplines from other major universities and companies from Romania, Europe and USA and has been evaluated by the authorized Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		The written exam tests the		Evaluation is		60% (E)
		understanding of the information		performed through		
		presented in classes and the ability		written exam (E).		
		to apply this knowledge.				
		The activity in class evaluates the				
		active involvement of the students				
		in the teaching process and their				
		participation to the discussions,				
		debates and other class activities				
		during the entire semester.				
Applications		Laboratory assessment evaluates		Evaluation is		40%
		the practical abilities obtained by		performed through		
		the students. Through homework		written exam and		
		assignments the students have the		homework		
		opportunity to develop their skill in		assessment.		
		applying the notions, concepts and				
		methods presented in class.				
10.4 Minimum standard of performance						
Condiție de promovare: N≥5						

Course responsible Prof.dr.eng. Dorian Gorgan