1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4	Field of study	Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	16.				

2. Data about the subject

2.1	Subject name				Elect	Electronic Measurements and Sensors						
2.2	2 Subject area			Com	Computer Science and Information Technology							
2.3	.3 Course responsible/lecturer				Asso	Assoc. Professor Rodica Holonec						
2.4	2.4 Teachers in charge of applications				S.Leo	S.Lecturer Septimiu Crisan, J. Lecturer Valentin Zaharia						
2.5	Year of study	II	2.6	Semester	3	2.7	Assessment	exam	2.8	Subject category	DID/OB	

3. Estimated total time

Sem	. Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	P		S	L	P			
3	Electronic Measurements and Sensors	2	-	2	-	28	-	28	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	Fotal hours in the teaching plan 56 3.5 of which, course 28 3.6 applications						28
Individual study							
Manual, lecture material and notes, bibliography							20
Supplementary study in the library, online and in the field							
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							20
Tutoring							2
Exams and tests							3
Other activities							-

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

- C1 Operating with basic Mathematical, Engineering and Computer Science concepts (2 credits)
- **C1.1** Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems
- C1.2 Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems
- C1.3 Building models for various components of computing systems
- C1.5 Providing a theoretical background for the characteristics of the designed systems
- C1.4 Formal evaluation of the functional and non-functional characteristics of computing systems
- C2 Designing hardware, software and communication components (2 credits)

	C2.1 – Describing the structure and functioning of computational, communication and software components and systems C2.4 – Evaluating the functional and non-functional characteristics of the computing systems using specific metrics
Cross	N/A

7.10	1. Discipline objectives (as results from the key competitives gamea)							
7.1	General objective	The students will gain the knowledge about:						
		- Instrumentation and sensors systems						
		- the working and operation of various electrical and electronic instruments						
		- the electrical measurement methods,						
		 principles and applications of different types of sensors 						
7.2	Specific objectives							

8. Contents

Measurement fundamentals. Terms and definitions. The structure of a complex instrumentation system. Sensors	Exposure Discussions	Projector
Fundamentals of Metrology. Measurement Units. Measurements Standards. Traceability. Measurement terminology. Errors and Uncertainties. The Measuring Instrument Specifications.		
3 Random Errors Analysis. Basic Concepts in Probability. Normal Distribution. Central Limit Theorem. The Evaluation of Uncertainties in Measurements		
4 Meters. Analog Meters-Classifications and Symbols. Types of Analog Instruments. Voltmeters. Ammeters. Wattmeters, Ohmmeters		
Measurements with Bridges and Potentiometers. Wheatstone Bridge. Principle. Applications. Types of AC bridges. Potentiometers.		
Amplification in Instrumentation. Operational Amplifiers. Basic circuits. Instrumentation Amplifiers. Current to Voltage, Resistance to Voltage Converters. Bridge Amplifiers.		
7 Electronic Voltmeters. DC Electronic Voltmeters. Types of AC Electronic Voltmeters. Lock-in Amplifiers. Principles and Applications		
8 Electronic Counters. Digital measurement of frequency and time		
9 Digital Multimeters. Computing Measuring Systems. Data Acquisition Boards. Sample and Hold Circuits. Nyquist theorem.		
10 Data Acquisition Boards Components. Digital to Analog Converters. Analog to Digital Converters. Virtual Instruments		
Power Measurement. Definitions. DC and AC Power Measurements. Digital Wattmeters		
12 The Analog and Digital Oscilloscopes		
Transducers, Sensors and Actuators. Principles and Classifications. Analog and digital Sensors.		
Position sensors. Temperature sensors. Light sensors.		

- 1. Rodica Holonec, *Electrical Measurements and Instrumentation*, Editura Mediamira, Cluj-Napoca, 2003, 259 p, ISBN 973-9357-42-3
- Todoran, Gh., Copandean, R; Masurari Electrice si Electronice. Editura Mediamira; Cluj Napoca. 2003. 282p. ISBN 973-9357-61-X.
- 3. Dragomir, N.D., TÂRNOVAN, I.G., Crişan, T.E. *Electrical Measurement of Non Electric Quantities. Vol. I.* Editura MEDIAMIRA, Cluj-Napoca, România, 2002. ISBN 973-9358-75-6.
- 4. TÂRNOVAN,I.G. *Metrologie electrică și instrumentație*. Editura MEDIAMIRA, Cluj-Napoca, România, 2003. ISBN 973-9357-39-3.

	5. Munteanu,R., TÂRNOVAN,I.G., Dragomir,N.D., Popovici,O. – <i>Electrotehnică și convertoare energetice</i> . Editura						
]	MEDIAMIRA, Cluj-Napoca, România, 1997.						
8.2.	Applications (Laboratory,)	Teaching methods	Notes				
1	Utilization of analogue and digital measurement instruments						
2	Measurement range extending of analogue instruments						
3	Voltammetric method for measurement of electrical circuit parameters						
4	Power measurement in monophasic alternate current						
5	RPM measurement		Experiment al circuits, Computer LabView software, NI				
6	Temperature measurements and control						
7	Photometric quantities measurement	Exposure					
8	Study of graphical programming language LabVIEW	applications					
9	Data acquisition with multifunctional boards						
10	Generation of analogue and digital signals with data acquisition boards		hardware				
11	Measurement with PC integrated instruments		nardware				
12	Study of digital oscilloscope Tektronix TDS 460A						
13	Study of functions generator Tektronix AFG 320						
14	Final assessment of laboratory reports						
D'1 1'	1.	•	•				

Bibliography

- 1. Munteanu,R., Dragomir,N.D., TÂRNOVAN,I.G., Holonec,Rodica, Bortoş,P. *Tehnici de măsurare*. *Îndrumător de laborator*. Atelierul de multiplicare al U.T.C.-N., 1995.
- 2. http://users.utcluj.ro/~tarnovan/Electronic%20Measurements%20and%20Sensors.htm
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired skills will be required of employees who work in designing and testing of complex instrumentation systems

10. Evaluation

Activity type	10.1 A	ssessment criteria	10.2	Assessment methods	10.3	Weight in the final grade		
Course	I	Final exam (E)-Theoretical		Written examination		80%		
	(questions and exercises (3 hours)						
Applications	I	Practical circuit (P)		Checking of		10%		
				functionality				
	I	Homework (HW)		Verification of		10%		
				results				
10.4 Minimum standard of performance								
$G=(E+P+HW)/100$; Condition to take the credits: $G \ge 5$;								

Course responsible Assoc. Professor Rodica Holonec Head of department Prof.dr.eng. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Mathematics
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	17.

2. Data about the subject

2.1	1 Subject name			Num	Numerical Calculus							
2.2	2.2 Subject area			Com	Computer Science and Information Technology							
2.3	2.3 Course responsible/lecturer				Prof.	Prof. dr. Dumitru Mircea IVAN						
2.4	2.4 Teachers in charge of applications				Lect.	Lect. dr. Mircia GURZAU, Assoc. prof. dr. Daniela ROSCA				A		
2.5	Year of study	II	2.6	Semester	3	2.7	Assessment	exam	2.8	Subject category	DID/OB	
											İ	

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]								
			S	L	P		S	L	P			
3	Numerical Calculus	2	-	2	-	28	-	28	-	72	128	5

	1			1		1	
3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							
Manual, lecture material and notes, bibliography							
Supplementary study in the library, online and in the field							9
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						30	
Tutoring						0	
Exams and tests							3
Other activities							0

3.7	Total hours of individual study	72
3.8	Total hours per semester	128
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

	4.1	Curriculum	Basic knowledge of Differential and Integral Calculus
Ī	4.2	Competence	Competences in elementary Differential and Integral Calculus: derivatives,
			integrals, series.

5. Requirements (where appropriate)

	3. Requirements (where appropriate)					
5.1	For the course	Videoprojector				
5.2	For the applications	Videoprojector				

6. Specific competences

- C1 Operating with basic Mathematical, Engineering and Computer Science concepts (5 credits)
- **C1.1** Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems
- C1.3 Building models for various components of computing systems
- C1.5 Providing a theoretical background for the characteristics of the designed systems

ross	N/A
Comp	

7.1	General objective	A presentation of the concepts, notions, methods and fundamental
		techniques used in differential calculus.
7.2	Specific objectives	Use of the differential calculus in order to solve problems in engineering.

8. Contents

8.1. Le	ecture (syllabus)	Teaching methods	Notes
1	Elements of Error Theory. Floating Point Arithmetic. Absolute and Relative	Explanation	2 hr
	Errors.		
2-3	Numerical Methods in Linear Algebra. Special Types of Matrices. Norms of	Demonstration	4 hr
	Vectors and Matrices. Eigenvalues and Eigenvectors. Error Estimation.		
	Matrix Equations. Pivoting Elimination. Improved Solutions of Matrix Equations.	Collaboration	
	Partitioning Methods for Matrix Inversion. LU Factorization. Doolittle's		
	Factorization. Choleski's Factorization Method. Iterative Techniques for Solving	Interactive	
	Linear Systems. Jacobi Iterative Method. Gauss-Seidel Iterative Method.	activities	
	Relaxation Methods. Characteristic Polynomial: Leverrier Method. Characteristic		
	Polynomial: Fadeev-Frame Method.		
4-5	Solutions of Nonlinear Equations. Method of Successive Approximation.		4 hr
	The Bisection Method. The Newton-Raphson Method. The Secant Method.		
	False Position Method. The Chebyshev Method. Numerical Solutions of		
	Nonlinear Systems of Equations. Newton's Method for Systems of Nonlinear		
	Equations. Steepest Descent Method.		
6-8	Elements of Interpolation Theory. Lagrange Interpolation. Divided Difference.		6 hr
	Mean Value Properties in Lagrange Interpolation. Approximation by		
	Interpolation. Hermite Interpolating Polynomial. Finite Differences. Interpolation		
	of Multivariable Functions. Scattered Data Interpolation. Shepard's Method.		
	Splines. B-splines.		
9-	Elements of Numerical Integration. Richardson's Extrapolation.		4 hr
10	Numerical Quadrature. Error Bounds in the Quadrature Methods.		
	Trapezoidal Rule. Richardson's Deferred Approach to the Limit.		
	Romberg Integration. Newton-Cotes Formulas. Simpson's Rule. Gaussian		
	Quadrature.		
11-	Elements of Approximation Theory. Discrete Least Squares Approximation.		4 hr
12	Orthogonal Polynomials and Least Squares Approximation. Rational Function		
	Approximation. Padé Approximation. Trigonometric Polynomial Approximation.		
	Fast Fourier Transform. Bernstein Polynomial. Bézier Curves. METAFONT.		
13-	Integration of Ordinary/Partial Differential Equations. The Euler Method.		4 hr
14	The Taylor Series Method. The Runge-Kutta Method. The Runge-Kutta Method		
	for Systems of Equations. Integration of Partial Differential Equations		
	Parabolic Partial-Differential Equations. Hyperbolic Partial Differential		
D.11.11	Equations. Elliptic Partial Differential Equations.		
I Biblio	graphy		

- 1. Dumitru Mircea Ivan. Calculus. Editura Mediamira, Cluj-Napoca, 2002. ISBN 973-9358-88-8.
- Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Mediamira, Cluj-Napoca, 2003. ISBN 973-9357-41-5.
- 3. Ioan-Adrian Viorel, Dumitru Mircea Ivan, and Loránd Szabó. Metode numerice cu aplicații în ingineria electrică. Editura Universității din Oradea,
- 4. Mircea Ivan and Kálmán Pusztai. Mathematics by Computer. Comprex Publishing House, Cluj-Napoca, 1992.

8.2. A	Applications (Laboratory)	Teaching methods	Notes
1	The applications follow the topics of the courses.	Explanation Demonstration	28 hr
		Demonstration	26 111

	Collaboration Interactive	
	activities	

Bibliography:

- 1. Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Mediamira, Cluj-Napoca, 2003. ISBN 973-9357-41-5.
- Ioan-Adrian Viorel, Dumitru Mircea Ivan, and Loránd Szabó. Metode numerice cu aplicații în ingineria electrică. Editura Universității din Oradea,
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course		Abilities of understanding and using creatively the concepts and proofs		Written examination		30%	
Applications		Abilities of solving problems and applying algorithms		Written examination		70%	
10.4 Minimum	10.4 Minimum standard of performance						
Ability to present coherently a theoretical subject and to solve problems with practical content.							

Course responsible Prof.dr. Dumitru Mircea IVAN Head of department Prof.dr.eng. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	18.

2. Data about the subject

2.1	2.1 Subject name			Anal	Analog and digital circuits						
2.2	2.2 Subject area			Com	Computer Science and Information Technology						
2.3	Course respons	ible/l	ectur	er		Prof.	Prof. dr. eng. Dădârlat Vasile Teodor – Vasile. Dadarlat@cs.utcluj.ro				
2.4	2.4 Teachers in charge of applications				Sl. dr. eng. Peculea Adrian – <u>Adrian.Peculea@cs.utcluj.ro</u>						
	Sl. dr. eng. Iancu Bogdan – Bogdan.Iancu@cs.utcluj.ro										
2.5	Year of study	II	2.6	Semester	3	2.7	Assessment	exam	2.8	Subject category	DID/OB

3. Estimated total time

Se	em.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
			[hours / week.]		[hours / semester]				ter]				
				S	L	P		S	L	P			
	3	Analog and digital circuits	2	-	2	-	28	-	28	-	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study						Hours	
Manual, lecture material and notes, bibliograph	ıy						40
Supplementary study in the library, online and in the field							10
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						24	
Tutoring							
Exams and tests							
Other activities							

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Basic knowledge in Physics, Electronics, Mathematics

5. Requirements (where appropriate)

	3. Requirements (where appropriate)					
5.1	For the course	Multimedia means				
5.2	For the applications	Classroom, PC with internet access				

6. Specific competences

C2: Designing hardware, software and communication components

C2.1: Describing the structure and functioning of computational, communication and software components and systems

C2.2: Explaining the role, interaction and functioning of hardware, software and communication components

- **C2.3:** Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies
- **C2.4:** Evaluating the functional and non-functional characteristics of the computing systems using specific metrics

	C2.5: Implementing hardware, software and communication systems
	N/A
s	
Cross	
C	
ິ	

7.1	General objective	Teamwork, understanding of basic digital electronics principles
7.2	Specific objectives	Each student able to understand the functionality for the main circuits from
		a motherboard

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction. Electrical signals, passive devices, linear circuits behavior at	Oral Presentations	
	elementary signals application.	using multimedia	
2	Semiconductor devices (I). Semiconductor, Schottky, Zener and light emitting	means	
	diode.	Q & A	
3	Semiconductor devices (II). Bipolar and field effect transistor.	Interactive	
4	Operational amplifiers. Characteristics, circuits with operational amplifiers with	teaching	
	negative feedback.		
5	DC power supplies. Rectifiers, filters. Parametric, feedback and integrated		
	voltage regulators. Oscillators. Positive feedback, oscillator circuits.		
6	Integrated logic circuit parameters. Static transfer characteristics, noise margins,		
	fan-in and fan-out, propagation time, power dissipation.		
7	Integrated logic circuit families (I). TTL integrated logic circuits.		
8	Integrated logic circuit families (II). NMOS, CMOS and HCT integrated logic		
	circuits.		
9	Bus building with logic circuits. Open collector and three state integrated logic		
	circuits, connecting circuits to buses, transfer between registers and three state		
	logic.		
10	Positive feedback circuits (I). Schmitt trigger and flip-flop circuits.		
11	Positive feedback circuits (II). Monostable and astable circuits.		
12	Semiconductor memories. Volatile and non-volatile semiconductor memories.		
13	Converters. Sampling, signal quantization, analog to digital and digital to analog		
	converters.		
14	Microcontrollers. Architecture, memory addressing, interrupt and timer system,		
	serial communication.		

Bibliography

1. Vasile Teodor Dadarlat, Adrian Peculea, "Circuite analogice si numerice", Ed. U.T.PRES, Cluj-Napoca, 2006, ISBN (10) 973-662-243-6 ISBN (13) 978-973-662-243-4.

8.2.	8.2. Applications (Laboratory)		Notes
1	Electrical signals and liner circuits.		
2	Semiconductor, Schottky, Zener and light emitting diode.	Practical exercises	
3	Bipolar and field effect transistor.	Brief presentation	
4	Circuits with passive and semiconductor devices.	of possible	
5	Circuits with operational amplifiers with negative feedback.	solutions	
6	Rectifiers, filters and regulators.	Self testing	
7	Oscillator circuits.	programmes	
8	Bipolar integrated logic circuits.		
9	MOS integrated logic circuits.		

10	Open collector integrated logic circuits.	
11	Three state integrated logic circuits.	
12	Schmitt trigger circuits.	
13	Multivibrator circuits.	
14	Laboratory test	

Bibliography

- 1. Slides for Analog an digital circuits courses + sets of problems and applications for individual study at ftp://ftp.utcluj.ro/pub/users/dadarlat/circ_analognumeric-calc
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Course content is kept state of the art by using latest technologies and devices available on the market

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade		
Course		Interactivity and initial preparation		Written exam (2,5 h).		70%		
Applications		Quality of practical work,		Continuous		30%		
		participation		assessment, final		ļ		
				written colloquium				
10.4 Minimum	10.4 Minimum standard of performance							
Grades > 5 for both theoretical and practical assessments								

Course responsible Prof. dr. eng. Vasile Dădârlat Head of department Prof.dr.eng. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	19.

2. Data about the subject

2.1	1 Subject name				Obje	Object Oriented Programming					
2.2	2 Subject area			Com	Computer Science and Information Technology						
2.3	3 Course responsible/lecturer			As. d	As. dr. eng. Marius Joldoş – <u>Marius Joldos@cs.utcluj.ro</u>						
2.4	Teachers in cha	arge c	of app	olications		As.dı	As.dr. eng. Ion Giosan – <u>Ion.Giosan@cs.utcluj.ro</u>				
						As.drd. eng. Ciprian Pocol – <u>Ciprian.Pocol@cs.utcluj.ro</u>					
2.5	Year of study	II	2.6	Semester	3	2.7	Assessment	exam	2.8	Subject category	DID/OB

3. Estimated total time

Sem.	Subject name	Lecture	ecture Applications Lectur		Lecture	Applications I			Individual study	TOTAL	Credit	
		[hours / week.]		[hours / semester]								
			S	L	P		S	L	P			
3	Object Oriented Programming	2	-	2	-	28	-	28	-	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28	
Individual study								
Manual, lecture material and notes, bibliograph	hy						27	
Supplementary study in the library, online and in the field								
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10	
Tutoring							7	
Exams and tests								
Other activities								

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

		1 \ 11 1	,
4.	.1	Curriculum	Computer Programming course
4.	.2	Competence	Use of a procedural programming language such as C

5. Requirements (where appropriate)

	s. Itequirements (where appropria	
5.1	For the course	
5.2	For the applications	

6. Specific competences

- C2 Designing hardware, software and communication components (5 credits)
- **C2.1** Describing the structure and functioning of computational, communication and software components and systems
- C2.2 Explaining the role, interaction and functioning of hardware, software and communication components
- **C2.3** Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies

s	N/A	
Cross		
COI		

7.1 General objective	To learn a rigorous treatment of object-oriented concepts using Java as an example language
7.2 Specific objectives	 to prepare object-oriented design for small/medium scale problems to demonstrate the differences between traditional imperative design and object-oriented design to explain class structures as fundamental, modular building blocks to understand the role of inheritance, polymorphism, dynamic binding and generic structures in building reusable code to write small/medium scale Java programs with simple graphical user interface to use classes written by other programmers when constructing their systems to be able to design and build simple Graphical User Interfaces (GUI)s.

8. Contents

8.1. L	8.1. Lecture (syllabus)		Notes
1	Concepts and paradigms in OOP		
2	Abstractions and Abstract Data Types. On to Java		
3	Control structures in Java. Classes and Objects		
4	Classes and Objects. Arrays		
5	Java Interfaces. Packages		Uses a video-
6	Inheritance and polymorphism. Classes Object and Class		
7	OO Application Development. UML Object and Class Diagrams. Assertions.		
	Midterm	Lectures, demos	
8	Testing. Debugging. Java Errors and Exceptions	and discussions	
9	Inner Classes. Event handling in Java. Introduction to Java Graphics		projector
10	Graphical User Interfaces		
11	Applets. Java Collections		
12	Introduction to Java I/O		
13	More Java I/O. Introduction to Threads		
14	Review		
11 12 13	Applets. Java Collections Introduction to Java I/O More Java I/O. Introduction to Threads		

- 1. Bruce Eckel, Thinking in Java, Third Edition, Prentice Hall PTR, 2002 (downloadable for free from the Web).
- 2. Paul & Harvey Deitel, Java. How to Program, Ninth Edition, Prentice Hall, 2012
- 3. David J. Barnes & Michael Kölling, Objects First with Java. A Practical Introduction using BlueJ, Fifth Edition, Prentice Hall / Pearson Education, 2012
- 4. Oracle Java Tutorials (freely downloadable from the Web)
- 5. Schmuller Joseph, SAMS teach yourself UML in 24 hours, 2004

8.2. <i>A</i>	Applications (Laboratory)	Teaching methods	Notes
1	Using BlueJ IDE		2
2	Primitive Types and Simple IO in Java		PCs
3	Variables and Expressions in Java		equipped
4	Flow Control and Simple Classes in Java	Tarka nin a	with
5	Classes, Objects and Arrays	Tutoring,	Java SDK and
6	Java Interfaces	discussions, and assisted program	IDEs
7	Java Inheritance	development	(BlueJ,
8	Java Exception Handling. Miniproject Assigned	development	Eclipse,
9	Event Handling		Netbean
10	Keyboard and Mouse Handling		s)
11	Applets		5)

12	2 Work for the Miniproject Assignment				
13	Work for the Miniproject Assignment				
14	Laboratory test				
Bibliography					
1. Course Moodle site available at: https://193.226.5.110					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Ability to solve problems using the		Written exam		60%
		object orientated paradigm				
Applications Quality of laboratory applications			Specifications and		40%	
and of the miniproject			code analysis and			
	evaluation					
10.4 Minimum standard of performance						
Correct solutions for min. 60% of the exam topics and applications						

Course responsible As. dr. eng. Marius Joldoş Head of department Prof.dr.ing. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	20.

2. Data about the subject

2.1	Subject name				DataBase							
2.2	Subject area				Computer Science and Information Technology							
2.3	Course responsible/lecturer				As. d	As. dr. eng. Călin Cenan – <u>Calin.Cenan@cs.utcluj.ro</u>						
2.4	2.4 Teachers in charge of applications				Sl. dr. eng. Delia Mitrea – <u>Delia.Mitrea@cs.utcluj.ro</u>							
2.5	Year of study	II	2.6	Semester	3	2.7	Assessment	exam	2.8	Subject category	DID/OB	

3. Estimated total time

Sem	. Subject name	Lecture Applications		Lecture	cture Applications Individua study			Individual study	TOTAL	Credit		
		[hours / week.]			[hours / semester]							
			S	L	P		S	L	P			
3	DataBase	2	-	2	-	28	-	28	-	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							
Manual, lecture material and notes, bibliograp	hy						21
Supplementary study in the library, online and in the field							
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							21
Tutoring							1
Exams and tests							3
Other activities							

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Mathematics
4.2	Competence	Set theory

5. Requirements (where appropriate)

5.1	For the course	Board, video projector, computer; student present in mandatory 50% of days for
		admission to the final exam
5.2	For the applications	Computers, specific software; student present in mandatory 100% of days for
		admission to the final exam

6. Specific competences

- C4 Improving the performances of the hardware, software and communication systems
- C4.1 Identifying and describing the defining elements of the performances of the hardware, software and communication systems
- ${\bf C4.2}$ Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
- $\textbf{C4.3} \textbf{ Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems$

	C4.4 - Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
	C4.5 - Developing professional solutions for hardware, software and communication systems based on performance optimization
	N/A
Cross	IVA

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	" Discipline sejectives (as results from the very competences summen)						
7.1	General objective	Developing general skills in databases and database applications					
7.2	Specific objectives	Assimilate theoretical knowledge on relational databases, Structured Query					
		Language SQL language					
		Presentation of Database Management Systems DBMS					
		Getting practical skills for designing and implementing database and					
		development of database application					

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction. Database, Database Management Systems	PDF & PPT	
2	Database Management Systems Architecture	Presentations;	
3	Entity – Relation Model	Demonstrations	
4	Relational Model	and model	
5	Database Design; Optimization, Normal forms	presentations on	
6	Entities; Relations; Constraints; Views (II)	board;	
7	Physical database design	small exercises to	
8	Indexes	increase	
9	Relational Algebra	interaction	
10	Relational Calculus		
11	Query by example		
12	Structured Query Language – SQL		
13	Database administration; Security		
14	Database Applications		

- 1. Alexandru Leluțiu Perenitatea Concepteleor Promovate de BAZELE de DATE, Ed. Albastra, 2003
- 2. Raghu Ramakrishnan and Johannes Gehrke Database Management Systems, McGraw-Hill Science, 2002
- 3. Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom First Course in Database Systems, Prentice Hall, 2001
- 4. P. O'Neil, E. O'Neil DATABSE Principles, Programming and Performance, Academic Press Morgan Kaufmann, 1994
- 5. Philip Greenspun SQL for Web Nerds, http://philip.greenspun.com/sql/
- 6. Ryan K. Stephens, Ronald R. Plew, Teach Yourself SQL in 21 Days, Prentice Hall, 1999

8.2. A	Applications (Laboratory)	Teaching methods	Notes
1	Microsoft SQL Server presentation		G .
2	MS SQL Server administration		Compute
3	Tables; Relationships; Database diagrams		rs,
4	Indexes; Constraints; Views		MS SQL
5	INSERT, UPDATE, DELETE	Exposure and	Server, MySQL,
6	Structured Query Language – SQL – Simple SELECT	applications	Apache
7	Structured Query Language – SQL – Advanced SELECT		Web
8	Web Database Applications: Architecture		Server.
9	Web Database Applications: Languages		PHP
10	Examples of Web Database Applications		

11	Project Work – Web Database Applications 1	
12	Project Work – Web Database Applications 2 – Mid Evaluation	
13	Project Work – Web Database Applications 3	
14	Final laboratory and project work evaluation	

Bibliography

- 1. Raghu Ramakrishnan and Johannes Gehrke Database Management Systems, McGraw-Hill Science, 2002
- Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom First Course in Database Systems, Prentice Hall, 2001
- Philip Greenspun SQL for Web Nerds, http://philip.greenspun.com/sql/
- Ryan K. Stephens, Ronald R. Plew, Teach Yourself SQL in 21 Days, Prentice Hall, 1999
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Database is a topic of Computer Engineering and Information Technology field, combining fundamental aspects and practical software tools. Explaining to students the principles of database implementation, database design and implementing database application. Course content it is similar to database courses in other universities in the country and abroad.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Solving 4 problems and answers to		2.5 hours written		60%
		questions of theory		evaluation		
Applications		Implementarea unei aplicatii		Ongoing evaluation and a final presentation		40%
10.4 Minimum standard of performance						

Solving practical laboratory work, implementing a database and a database application, solving the SQL Structured Query Language problem and another two out of the four other subjects.

Course responsible As. dr. eng. Calin Cenan Head of department Prof.dr.ing. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	21.

2. Data about the subject

2.1	Subject name				Assembly Language Programming						
2.2	2 Subject area			Computer Science and Information Technology							
2.3	.3 Course responsible/lecturer			Asso	Assoc. Prof. dr. eng. Emil Cebuc						
2.4	2.4 Teachers in charge of applications										
2.5	Year of study	II	2.6	Semester	3	2.7	Assessment	exam	2.8	Subject category	DS/OB
											1

3. Estimated total time

Sem.	Subject name	Lecture Applications		Lecture	Applications			Individual study	TOTAL	Credit		
		[hours / week.]			[hours / semester]							
			S	L	P		S	L	P			
3	Assembly Language Programming	2	-	2	-	28	-	28	-	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							
Manual, lecture material and notes, bibliograp	hy						24
Supplementary study in the library, online and in the field							24
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							22
Tutoring						2	
Exams and tests							2
Other activities							0

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	None
4.2	Competence	None

5. Requirements (where appropriate)

	` 11 1	,
5.1	For the course	Projector, Blackboard
5.2	For the applications	PC with 32 bit operating system, 1 PC per student

6. Specific competences

- C2 Designing hardware, software and communication components (2 credits)
- **C2.1** Describing the structure and functioning of computational, communication and software components and systems
- C2.2 Explaining the role, interaction and functioning of hardware, software and communication components
- **C2.3** Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies
- **C2.4** Evaluating the functional and non-functional characteristics of the computing systems using specific metrics
- C2.5 Implementing hardware, software and communication systems

	C3 Problems solving using specific Computer Science and Computer Engineering tools (3 credits) C3.1 Identifying classes of problems and solving methods that are specific to computing systems C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 Applying solution patterns using specific engineering tools and methods C3.4 Evaluating, comparatively and experimentally, the available alternative solutions for performance optimization
	C3.5 Developing and implementing software solutions for given problems
Cross competences	N/A

7.1	General objective	Knowledge of Microprocessor structure and low level programming
7.2	Specific objectives	Is able to use various addressing modes, assembly language programming
		techniques, use specific programming tools

8. Contents

6. COI			
8.1. L	ecture (syllabus)	Teaching methods	Notes
1	C1. Introduction, data representation	PowerPoint	
2	C2. ISAx86 Architecture, addressing modes	presentations,	
3	C3. x86 Instruction format	Examples of	
4	C4. MASM x86 directives ALP program prototypes	Program listings,	
5	C5. ISA x86 Instruction set – data transfer, address transfer arithmetic and logical	lecture	
	instructions		
6	C6. ISA x86 Instruction set – shift, rotate, flow control instructions		
7	C7. ISA x86 Instruction set – 386, software interrupt, string instructions		
8	C8. Coprocessor structure and operation, data transfer, arithmetic instructions		
9	C9. Coprocessor math functions, misc. instructions		
10	C10. MMX extensions – MMX calculus, MMX instructions		
11	C11. Protected mode operations, memory management, segmentation, privilege		
	levels		
12	C12. System function calls		
13	C13. Multiple module programs		
14	C14. Program optimisation		
D'1.1'	1.	·	·

- 1. PPT lecture notes at: ftp.utcluj.ro/pub/users/cemil /ALP
- 2. D. Gorgan, G. Sebestyen, Proiectarea calculatoarelor", Editura albastra, 2005,
- 3. R. Hyde R. Hyde, "AoA The Art of Assembly language", la adresa: webster.cs.ucr.edu/AoA/DOS/pdf/
- 4. S. Nedevschi, "Microprocesoare", Editura UTCN, 1994

8.2. <i>F</i>	Applications (Laboratory)	Teaching methods	Notes
1	L1. Information Representation		
2	L2. Tools, ISA x86 Architecture, addressing modes		
3	L3. Addressing Modes and address calculus		
4	L4. Pseudo instruction Usage		
5	L5. ISA x86: Instructions data transfer, arithmetical and logical	Interactive	
6	L6. ISA x86: Instructions: shift and rotate	tutoring,	
7	L7. ISA x86: Instructions: flow control, other instructions	learn bye	
8	L8. Real number	example	
9	L9. Complex operations		
10	L10. Multimedia operations		
11	L11. Program optimisation		
12	L12. System function call		

13 L13. Advanced programming techniques						
14	L14. Colloquium					
Biblio	Bibliography					
Art of	Art of assembly language, Randall Hyde available at: ftp://ftp.utcluj.ro/pub/users/cemil/asm/					
Lab V	Lab Workbook, Emil Cebuc et. All. Available at: ftp://ftp.utcluj.ro/pub/users/cemil/asm/labs/					
Lab v	Lab Workbook, Emil Cebuc et. All. Available at: http://ftp.utcluj.ro/pub/users/cemil/asm/labs/					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Course and lab contents are discussed and compared to similar courses in other universities and with software companies like Bitdefender

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Knows microprocessor structure, number representation, x86 basic instruction set, system function calls and assembly program structure		Midterm written exam Final Oral exam Admittance to final exam conditioned by successful lab colloquium		2/9 4/9
Applications Is able to develop a medium size program using specific tools Lab Colloquium 3/9						
10.4 Minimum standard of performance						
Is able to develop a medium size interactive assembly language program using specific tools						

Course responsible Assoc. Prof. dr. eng. Emil Cebuc Head of department Prof. dr.eng. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	22.

2. Data about the subject

2.1	Subject name				Forei	Foreign Language I (English, French - Technical documents elaboration)							
2.2	Subject area				Com	Computer Science and Information Technology							
2.3	Course respons	ible/l	ecture	er		Asso	Assoc. prof. dr Marinela Granescu granescu@lang.utcluj.ro						
2.4	2.4 Teachers in charge of applications						-						
2.5	Year of study	II	2.6	Semester	3	2.7	Assessment	Colloquium	2.8	Subject category	DC/OB		

3. Estimated total time

Sem.	Subject name	Lecture Applications			Lecture	e Applications			Individual study	TOTAL	Credit	
		[hou	rs / v	veek.] P	[hours	s / se	mes			
3	Foreign Language I (English, French - Technical documents elaboration)	2	-	-	-	28	-	-	-	-	28	1

3.1 Number of hours per week	2	3.2	of which, course	2	3.3	applications	-
3.4 Total hours in the teaching plan	28	3.5	of which, course	28	3.6	applications	-
Individual study							
Manual, lecture material and notes, bibliography							-
Supplementary study in the library, online and in the field							-
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							-
Tutoring						-	
Exams and tests							-
Other activities						-	

3.7	Total hours of individual study	ı
3.8	Total hours per semester	28
3.9	Number of credit points	1

4. Pre-requisites (where appropriate)

	1 \ 11 1	,
4.1	Curriculum	B1 according to the Common European Framework for Languages
4.2	Competence	Continuous education

5. Requirements (where appropriate)

	3. Requirements (where appropria	iie)
5.1	For the course	Study of research articles
5.2	For the applications	

6. Specific competences

	N/A
nal	
Professional competences	
ofes	
P ₁	

ses	CT3 – Demonstrating the spirit of initiative and action for updating professional, economical and organizational culture knowledge (1 credit)
oss	canare and wreage (1 ereal)
Cr	
5	

7.1	General objective	Development of communicative competence in an engineering professional
		context
7.2	Specific objectives	- Forming and developing the skill of searching and using correctly
		information sources specific of academic and/or research study
		- Improvement of writing skill

8. Contents

8.1. Le	ecture (syllabus)	Teaching methods	Notes
1	Importance of professional communication	Lecture,	
2	Professional and academic communication	conversation,	
3	The writing process of a technical document. Identification and use of best	slides, format	
	printed and electronic sources.	awareness raising,	
4	Drafting. Editing. Grammar rules and conventions.	writing exercises	
5	The sentence and the paragraph. Punctuation and spelling.		
6	Language functions: definitions, exemplification, contrast and comparison, cause		
	and effect, description, instructions		
7	Document writing conventions. Legal and ethical aspects regarding academic		
	writing		
8	Avoiding plagiarism. Paraphrase. Reference sources		
9	Editing and improving documents. Text reduction techniques		
10	Synthesis, summary, report		
11	Types of technical documents.		
12	Official letters.		
13	British and American English		
14	Final test		

Bibliography

- 1. Granescu, M., Adam, E., Effective Academic and Technical Writing, UTPress, Cluj-Napoca, 2009
- 2. Munteanu, S.C. (2002) Academic Writing for Engineering Students, Ed. Genesis Tipo, Cluj Napoca, 2002,
- 3. *** (2001) Students' English Grammar, UTPress, Cluj-Napoca, 2001
- 4. Quirk, R. A Grammar of English, OUP., 1998
- 5. Hutchin, N. Thomas, Leslie A. Olsen, *Technical Writing & Professional Communication for Nonnative Speakers Of English*, Ed. McGraw Hill Inc. 1991
- 6. Ioani Monica, Granescu Marinela, Vlaicu Rodica, Tehnici de comunicare pentru ingineri, U.T. Pres, 2002
- 7. Research articles

8.2. A	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes	
1	-			
Bibliography				

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Improving the skills of writing research and engineering texts in English will contribute to increasing employability opportunity with companies using foreign languages as a communication means.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course						
Applications		Ability to answer questions in the format of a short sized text, where layout, language and discourse structures are correctly used.		Final written test + assignments		50%+50%

10.4 Minimum standard of performance

Minimum 60% of the final test, regarding language, lexical and discourse structures used in the technical discourse, linking words, verbs in impersonal moods, nominal groups, revision and correction of written texts

Course responsible Assoc. prof. dr Marinela Granescu Head of department Prof.dr.eng. Rodica Potolea