1. Data about the program of study

	1 8 3					
1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Mathematics				
1.4	Field of study	Computer Science and Information Technology				
1.5 Cycle of study		Bachelor of Science				
1.6 Program of study/Qualification		Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	1.				

2. Data about the subject

2.1	Subject name				Math	Mathematical Analysis I (Differential calculus)						
2.2	2.2 Subject area				Computer Science and Information Technology							
2.3	2.3 Course responsible/lecturer				Prof.	Prof. dr. Dumitru Mircea IVAN						
2.4	2.4 Teachers in charge of applications				Lect.	Lect. Mircea RUS, Lect. Adela CAPATA						
2.5	Year of study	I	2.6	Semester	1	2.7	Assessment	exam	2.8	Subject category	DF/OB	
											1	

3. Estimated total time

	e. Estimated total time											
Sem.	Subject name	Lecture Applications		Lecture	Applications			Individual study	TOTAL	Credit		
		[hours / week.]		[hours / semester]			ter]					
			S	L	P		S	L	P			
1	Mathematical Analysis I (Differential calculus)	2	2	-	-	28	28	•	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours
Manual, lecture material and notes, bibliography							20
Supplementary study in the library, online and in the field							4
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						21	
Tutoring							0
Exams and tests							3
Other activities						0	
2.7 Total house of individual study.							

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of Differential Calculus and Set Theory
4.2 Competence		Competences in elementary Differential Calculus: elements of set theory,
		limits, sequences and series, derivatives.

5. Requirements (where appropriate)

5.1	For the course	Videoprojector
5.2	For the applications	Videoprojector

6. Specific competences

Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.3 – Building models for various components of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
Cross	N/A

7.1	General objective	A presentation of the concepts, notions, methods and fundamental techniques used in differential calculus.					
7.2	Specific objectives	Use of the differential calculus in order to solve problems in engineering. Use of the differential calculus in modelling and solving practical problems concerning spatial forms.					

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Elements of Set Theory. Set operations. Functions. Cardinal numbers.	Explanation	
2	General Topology. Topologies and topological spaces. Open and closed sets.		
	Neighbourhoods. Interior and closure of a set. Limit points.	Demonstration	
3	Metric. Topology of a metric space. Sequences in metric spaces.		
4	Sequences of Numbers. Stolz-Cesaro criterion.	Collaboration	
5	Series of Numbers. Convergence tests for series. Infinite products.		
6	Continuity. Continuous mappings on topological, metric and Euclidean spaces.	Interactive	
7	Differential Calculus for Functions of One Variable. Mean-value theorems.	activities	
	Taylor's formula for real functions of one variable. Differential of functions of one		
	variable.		
8-	Differential Calculus for Functions of Several Variables. Partial derivatives.		
10	Derivative of composite functions. Homogeneous functions. Euler's identity.		
	Gradient. Directional derivative. Lagrange's mean value theorem. Differential of		
	functions of several variables. Taylor's formula for functions of several variables.		
11-	Functional Sequences and Series. Power series. Trigonometric and Fourier series.		
12			
13	Implicit Functions. Existence theorems for implicit functions. Change of		
	coordinates and variables.	=	
14	Extrema of Functions. Unconditional and conditional extrema.		
Biblio	ography		
	1. Mircea Ivan. Elemente de calcul integral. Mediamira, Cluj-Napoca, 2003.		
	2. Dumitru Mircea Ivan. Calculus. Editura Mediamira, Cluj-Napoca, 2002.	1	
8.2.	Applications (Seminars)	Teaching methods	Notes
1	Exercises related to: set operations, functions, cardinal numbers.		
2	Exercises related to: topologies, open and closed sets, eighbourhoods, interior and		
	closure of a set.	Explanation	
3	Example of metrics with application in engineering.	=	
4	Exercises related to sequences of numbers.	Demonstration	
5	Exercises concerning convergence tests for series.		
6	Exercises related to continuous mappings.	Collaboration	
7	Exercises concerning mean-value theorems and Taylor's formula for real		
	functions of one variable.	Interactive	
8-	Exercises related to: partial derivatives, derivative of composite functions,	activities	
10	gradient, directional derivative, differential of functions of several variables,		
	Taylor's formula for functions of several variables.		

11-	Exercises related to power and Fourier series.		
12			
13	Exercises related to implicit functions, change of coordinates and variables.		
14	Exercises concerning unconditional and conditional extrema.		
D'1.1'	1	•	

Bibliography

- 1. Dumitru Mircea Ivan, et al. Analiză matematică Culegere de probleme pentru seminarii, examene și concursuri. Editura Mediamira, Cluj-Napoca, 2002.
- Mircea Ivan et al. Culegere de Probleme Pentru Seminarii, Examene şi Concursuri. UT Press, Cluj-Napoca, 2000
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course		Abilities of understanding and		Written examination		30%	
		using creatively the concepts and					
		proofs					
Applications		Abilities of solving problems and		Written examination		70%	
	applying algorithms						
10.4 Minimum standard of performance							
Ability to present coherently a theoretical subject and to solve problems with practical content.							

Course responsible Prof.dr. Dumitru Mircea Ivan

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4 Field of study		Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	2.				

2. Data about the subject

2.1	Subject name				Linea	Linear Algebra						
2.2	2 Subject area				Com	Computer Science and Information Technology						
2.3	2.3 Course responsible/lecturer				Prof.	Prof. dr. Ioan RASA <u>Ioan.Rasa@math.utcluj.ro</u>						
2.4	Teachers in charge of applications			Conf. dr. Daniela Inoan, Conf. dr. Dalia Cimpean								
						<u>Daniela.Inoan@math.utcluj.ro</u> ; <u>Dalia.Cimpean@math.utcluj.ro</u>			uj.ro			
2.5	Year of study	I	2.6	Semester	1	2.7	2.7 Assessment exam 2.8		Subject category	DF/OB		

3. Estimated total time

Sem.	Subject name	Lecture	Applications Lecture Application		ions	Individual study	TOTAL	Credit				
		[hours / week.]		[hours / semester]			ter]					
			S	L	P		S	L	P			
1	Linear Algebra	2	2	-	-	28	28	-	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28	
Individual study								
Manual, lecture material and notes, bibliography								
Supplementary study in the library, online and in the field								
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							21	
Tutoring							0	
Exams and tests								
Other activities								

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of Linear Algebra and Analytic Geometry
4.2	Competence	Competences in elementary Linear Algebra and Analytic Geometry: matrices,
		determinants, linear systems, vectors and lines in plane

5. Requirements (where appropriate)

5.1	For the course	Blackboard, videoprojector
5.2	For the applications	Blackboard, videoprojector

6. Specific competences

C1 – Operating with basic Mathematical, Engineering and Computer Science concepts

C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems

C1.3 – Building models for various components of computing systems

C1.5 – Providing a theoretical background for the characteristics of the designed systems

es	N/A
ss	
Cro	
COI	

7.1	General objective	A presentation of the concepts, notions, methods and fundamental				
		techniques used in linear algebra and analytic geometry.				
7.2	Specific objectives	Use of the matriceal calculus (in the general context of linear algebra) in				
		order to solve problems in engineering.				
		Use of the vectorial calculus (in the general context of analytic geometry) in				
		modelling and solving practical problems concerning spatial forms.				

8. Contents

8.1. Lecture (syllabus)	Teaching methods	Notes
1 Linear spaces. Definition. Linear subspaces. Examples.	Explanation	
2 Linear independence. Basis. Dimension. Change of basis.		
3 Inner - product spaces. Definition, properties, Schwarz' inequality. Examples	Demonstration	
4 Linear transformations. Definition, elementary properties, Kernel and Image.		
The matrix associated to a linear transformation. The standard construction. Expresions in terms of coordinates.	Collaboration	
6 Eigenvalues and eigenvectors. Definitions, invariant subspaces, characteristic polynomials.	Interactive activities	
7 The diagonal form. Canonical forms, diagonalizability.		
8 The Jordan canonical form. Construction of a Jordan basis and a Jordan matrix.		
9 Functions of a matrix. The n-th power of a matrix. Elementary functions of a matrix.		
The adjoint operator. Definition, properties, examples.		
Self-adjoint operators, unitary operators, properties of the eigenvalues and eigenvectors.		
Bilinear forms, quadratic forms. The associated matrix.		
The canonical form. Reduction to a canonical form. The method of eigenvalues and Jacobi's method.		
14 Conics and quadrics. Reduction to a canonical form. Geometric properties.		

Bibliography

- 1. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analytic Geometry, Ed. Mediamira, 2012
- 2. V. Pop, I. Rasa, Linear Algebra with Applications to Markov Chains, Ed. Mediamira, 2005

8.2.	Applications (Seminars)	Teaching methods	Notes				
1	Determinants, matrices, geometric vectors						
2	Linear spaces, bases, dimension						
3	Inner-product spaces						
4	Linear transformations. Examples	Explanation					
5	Linear transformations characterized in terms of matrices	•					
6	Invariant subspaces, eigenvalues, eigenvectors	Demonstration					
7	Diagonalizable linear transformations						
8	Jordan bases, Jordan canonical forms	Collaboration					
9	Elementary functions of a matrix, examples						
10	The adjoint operator	Interactive					
11	Special classes of operators	activities					
12	Bilinear forms, quadratic forms						
13	Reduction to a canonical form						
14	4 Conics and quadrics, reduction to a canonical form						
D 1.11	D'11' 1						

- 1. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analytic Geometry, Ed. Mediamira, 2012
- 2. V. Pop, I. Corovei, Algebra pentru ingineri. Culegere de probleme, Ed. Mediamira, 2003.
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course		Abilities of understanding and		Written examination		30%	
		using creatively the concepts and					
		proofs					
Applications		Abilities of solving problems and		Written examination		70%	
		applying algorithms					
10.4 Minimum standard of performance							
Ability to present coherently a theoretical subject and to solve problems with practical content.							

Course responsible Prof. dr. Ioan RASA

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	3.

2. Data about the subject

2.1	3			Spec	Special Mathematics I						
2.2				Com	Computer Science and Information Technology						
2.3	Course respons	ible/l	ecturer		Prof.	dr. Daniela RO	OŞCA <u>Daniela.</u>	Rosca	<u>at_math.utcluj.ro</u>	•	
2.4	Teachers in charge of applications										
2.5	Year of study	I	2.6 Semester	1	2.7	Assessment	exam	2.8	Subject category	DF/OB	

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]								
			S	L	P		S	L	P			
1	Special Mathematics I	2	2	-	-	28	28	-	-	72	128	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours
Manual, lecture material and notes, bibliography						28	
Supplementary study in the library, online and in the field						14	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						13	
Tutoring						7	
Exams and tests							10
Other activities	•	•	•				0

3.7	Total hours of individual study	72
3.8	Total hours per semester	128
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Algebra, highschool level (real profile)
4.2	Competence	Notions of combinatorial theory (arrangements, permutations, combinations);
	_	sets and operations with sets; notions of mathematical logic; mathematical
		induction method, calculations with matrices

5. Requirements (where appropriate)

5.1	For the course	Blackboard, videoprojector, computer, graphic tablet
5.2	For the applications	Blackboard, videoprojector, computer, graphic tablet

6. Specific competences

		C1 - Operating with basic Mathematical	. Engineering and Computer Science concepts
--	--	--	---

C1 – Operating with basic Mathematical, Engineering and Computer Science concepts
C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems

C1.3 – Building models for various components of computing systems

C1.5 – Providing a theoretical background for the characteristics of the designed systems

es	N/A
SSS	
Crc	
8	

7.1	General objective	A presentation of the concepts, notions and fundamental methods used in counting and			
	J	discrete probability theory.			
		A presentation of basic concepts and properties in graph theory, basic algorithms and			
		theorems based in graph theory, and their mathematical proof.			
7.2	Specific objectives	Develop and apply strategies for solving combinatorial problems;			
		Identification of patterns in solving combinatorial counting problems;			
		Modeling and formulation, in terms of probability theory and specific notations, of			
		concrete problems coming from random experiments and random processes;			
		Identify standard discrete distributions of probability for solving probabilistic problems;			
		nterpretation of numerical results in the problems modeled using random variables;			
		Modelling of concrete problems using graph theory notions and concepts;			
		Application of specific algorithms to problems modeled by classical graph theory (trees,			
		minimum spanning trees, coding and decoding trees, construction Eulerian trails and			
		Hamiltonian paths, the Chinese postman problem, flow problems, etc).			

8. Contents

8.1. Le	ecture (syllabus)	Teaching methods	Notes
1	Principles of counting and counting methods.	Windows Journal	
2	Recursions and generating functions.	software for	
3	Introduction to graphs. Definitions, notations, general properties. Connectivity.	graphic tablet,	
	Graphs and digraphs representation.	videoprojection	
4	Trees, sorting and searching: roted trees, decision trees, sorting trees.		
5	Binary trees and binary codes. Huffman codes.	Explanation	
6	Spanning trees. Depth-first search, breadth-first search. Minimum spanning tree		
	in weighted graphs - Prim's and Kruskal's algorithm.	Demonstration	
7	Minimum spanning trees in directed graphs - Chu-Liu-Edmonds algorithm.	0.11.1	
	Shortest path - Dijkstra's algorithm. Greedy algorithms. General properties and	Collaboration	
	greedy algorithm for the maximum weight problem.		
8	Bipartite graphs. Matchings. Matchings in bipartite graphs. Maximum matchings.		
9	Eulerian graphs and Hamiltonian graphs. The postman's problem.		
10	Networks, flows and cuts. Max flow min cut theorem.		
11	Introduction to discrete probabilities: the axioms of probabilities, conditional		
	probabilities, total probability and Bayes' formula.		
12	Probabilistic schemes: binomial, multinomial, Poisson, geometric, negative		
	binomial, Poisson's urns.		
13	Random variables, examples of discrete random variables, operations with		
	random variables.		
14	Expected value and variance. Covariance. Chebyshev's theorem and weak law of		
	large numbers.		

- 1. T. Toadere, Grafe, Teorie, algoritmi, aplicatii, Ed. Microinformatica, Cluj, 2002.
- 2. N. Vornicescu, Grafe. Teorie si algoritmi, Ed. Mediamira, 2005.
- 3. D. Rosca, Discrete Mathematics, Ed. Mediamira, 2007.
- 4. A. Mitrea, Fundamente de teoria probabilitatilor, Ed. UTPress, 2003.
- 5. K. Bogart, S. Drysdale, C. Stein, Discrete Math for Computer Science Students, available online at http://www.cs.dartmouth.edu/~ac/Teach/cs21-Winter04/
- 6. N. L. Biggs, Discrete Mathematics, Oxford University Press, 2005.
- 7. R. Durret, The Essentials of Probability, Duxbury Press, 1994.

8.2. A	pplications (Seminars)	Teaching methods	Notes
1	Counting. The pigeonhole principle, counting set of pairs. Functions, words.	Windows Journal	
	Selections with and without repetition.	software for	
2	Partitions, classifications, distributions.	graphic tablet,	

3	Walks, trails, cycles in graphs. Graphs and digraphs representations. videoprojection					
4	Problems related to graphs.					
5	Properties and applications of incidence matrices and adjacency matrices.	Explanation				
6	Applications of trees: decision problems, sorting algorithms.					
7	Spanning trees: depth-first search, breadth-first search trees, properties.	Demonstration				
	Algorithms for minimum spanning trees.					
8	Algorithms for shortest path. Greedy algorithms for vertex coloring. General Collaboration					
	notions about planar graphs.					
9	Bipartite graphs and matchings. Construction of alternating paths.					
10	Eulerian and Hamiltonian graphs. Algorithms for Eulerian and Hamiltonian tours.					
11	Calculation of probabilities.					
12	The theorem on total probability and Bayes' formula with applications.					
13	Construction of random variables and calculation expected value and variance.					
14	Applications of the weak law for large numbers.					

Bibliography

- $1. \quad J.\ A.\ Bondy,\ U.S.R.\ Murty,\ Graph\ theory\ with\ applications,\ available\ online\ at \\ \underline{http://www.ecp6.jussieu.fr/pageperso/bondy/books/gtwa/gtwa.htm}$
- 2. J. Gross, J. Yellen, Graph Theory and its Applications, CRC Press, 1999
- 3. Hannelore Lisei, Sanda Micula, Anna Soos, *Probability Theory through Problems and applications*, Cluj University Press, 2006.
- 4. Arthur Enghel Probleme de matematică: strategii de rezolvare, Ed. Gil, 2006.
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course		Abilities of understanding and		Written examination		30.00%	
		reproducing the concepts and					
		proofs					
Applications		Abilities of solving problems and		Written examination		70.00%	
	applying algorithms						
10.4 Minimum standard of performance							
05/10/14							

Course responsible Prof. dr. Daniela ROŞCA

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	4.

2. Data about the subject

2.1	Subject name I					Logic Design						
2.2	2.2 Subject area					Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer					Prof.	Prof. dr. eng. Octavian Cret – Octavian.Cret@cs.utcluj.ro					
2.4	Teachers in cha	arge o	f app	olications		Dipl. eng. Bogdan Popa – bogdititupopa@gmail.com						
						Dipl.	eng. Lorena D	ăian – <u>lorenaiu</u> l	lia@y	ahoo.com		
2.5	Year of study	I	2.6	Semester	1	2.7	Assessment	exam	2.8	Subject category	DID/OB	

3. Estimated total time

Sem	. Subject name	Lecture	ecture Applications I		Lecture	Applications			Individual study	TOTAL	Credit	
		[hou	rs / v	veek.]	[hour	s / se	mes	ter]		
			S	L	P		S	L	P			
1	Logic Design	2	-	2	-	28	-	28	-	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28	
Individual study H								
Manual, lecture material and notes, bibliography								
Supplementary study in the library, online and in the field								
Preparation for seminars/laboratory works, hor	mework, 1	reports	, portfolios, essays				17	
Tutoring							6	
Exams and tests							9	
Other activities								

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	• N/A
4.2	Competence	Mathematics (Algebra), Physics (electricity)

5. Requirements (where appropriate)

5.1	For the course	• A minimum of 75% course attendance rate is mandatory for being admitted to
		the final exam
5.2	For the applications	• Preliminary preparation of summaries from the indicated bibliography
		(laboratory textbook)

6. Specific competences

C1 – Operating with basic Mathematical, Engineering and Computer Science concepts

C1.1 – Recogni	zing and	l describing	concepts	that are	specific to	the fields	of ca	alculability,	complexity,	programming
paradigms, and n	nodeling	computation	al and con	nmunicati	on systems					
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~										

- C1.2 Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems
- C1.3 Building models for various components of computing systems
- C1.4 Formal evaluation of the functional and non-functional characteristics of computing systems
- C1.5 Providing a theoretical background for the characteristics of the designed systems

ses	N/A
Pross petenc	
Comj	

7.1	General objective	The main objective of this discipline is to give to the students the bases of Logic Design, in order to make them able to analyze, design and implement any digital system.
7.2	Specific objectives	 To reach this goal, students will learn to: Analyze and synthesize combinational logic systems; Analyze and synthesize synchronous and asynchronous sequential machines; Apply digital system design principles and descriptive techniques; Utilize programmable devices such as FPGAs and PLDs to implement digital systems; Understand timing issues in digital systems and study these via digital circuit simulation.

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction. Number systems and codes, errors		
2	Number representation systems. Binary arithmetic		
3	Boolean Algebra. Boolean functions. Logic gates. Digital systems and functions representation		
4	Methods for minimizing Boolean functions and systems of functions		
5	Combinational logic circuits (CLCs) analysis and design (synthesis). SSI and MSI CLCs.		
6	Methods for designing digital systems with SSI, MSI, LSI and VLSI circuits. Combinational Hazard.	Blackboard presentation	N/A
7	Sequential logic circuits. Latches and Flip-Flops.		
8	Flip-Flops applications: frequency dividers, counters	discussions	
9	Flip-Flops applications: data registers, converters, memories		
10	Methods for designing digital systems using Flip-Flops		
11	Methods for designing digital systems using memories, multiplexers, decoders, counters		
12	Methods for designing sequential synchronous systems		
13	Methods for designing digital systems using programmable devices (I)		
14	Methods for designing digital systems using programmable devices (II)		

- Contemporary Logic Design, Randy H. Katz, Benjamin Cunnings / Addison Wesley Publishing Co., 1993.
 Digital Design Principles and Practices, John F. Wakerly, Prentice-Hall, 2000.
 FPGA-based System Design, Wayne Wolf, PRENTICE HALL Professional Technical Reference Upper Saddle River, NJ 07458 www.phptr.com ISBN: 0-13-142461-0.

8.2. A	8.2. Applications (Laboratory) Teaching methods							
1	Basic Logic Circuits							
2	ActiveHDL Schematic Editor and Simulator (I)							
3	ActiveHDL Schematic Editor and Simulator (II)	Practical work on						
4	Combinational Logic Circuits (I)	test boards, FPGA						
5	Combinational Logic Circuits (II) – MSI circuits	boards,						
6	Combinational Logic Circuits (III) – Complex circuits	specialized						
7	Synthesis of Combinatorial Logic Circuits using Programmable Logic Devices	software,	N/A					
8	Flip-flops	blackboard	IN/A					
9	Counters (I)	presentations,						
10	Counters (II)	supplemental						
11	Registers and Shift Registers	explanations and						
12	The XILINX FPGA Family	discussions						
13	Synthesis of Sequential Logic Circuits using FPGA Devices							
14	Laboratory test							
Biblio	Bibliography							

- 1. Analiza și sinteza dispozitivelor numerice, Îndrumător de laborator, Ediția a-3-a, L. Văcariu, O. Creț, A. Nețin, Ed. U.T. Press, Cluj-Napoca, 2009.
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field
- Since this discipline is a basic one in Computer Science, its content is "classic" but also modern because it familiarizes students with the modern principles of Logic Design (utilization of modern simulation and synthesis tools, FPGA and CPLD-based design etc.). Its contents have been discussed with major academia and industry actors from Romania, Europe and U.S.A. and it has been evaluated several times by Romanian Governmental Agencies like CNEAA and ARACIS.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade		
C	Problems solving abilities		Written Exam		70%		
Course	Presence, (Inter)activity						
A1141	Problems solving abilities				30%		
Applications	Presence, (Inter)activity						
10.4 Minimum standard of performance							
Modeling and solving typical Logic Design problems using the domain-specific formal apparatus							

Course responsible Prof. dr. eng. Octavian Creţ

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	5.

2. Data about the subject

2.1	Subject name (Com	Computer Programming					
2.2	2 Subject area					Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer					As. d	As. dr. eng. Marius Joldoş – <u>Marius Joldos@cs.utcluj.ro</u>				
2.4	Teachers in cha	arge o	f app	olications		As.dr. eng. Ion Giosan – <u>Ion.Giosan@cs.utcluj.ro</u>					
						As.dı	rd. eng. Cipriar	Pocol – Cipri	an.Po	col@cs.utcluj.ro	
2.5	Year of study	I	2.6	Semester	1	2.7	Assessment	exam	2.8	Subject category	DF/OB

3. Estimated total time

Sem.	Subject name	Lecture A		Applications		Lecture	Applications		Individual study	TOTAL	Credit	
		[hours / week.]			[hours / semester]							
			S	L	P		S	L	P			
1	Computer Programming	2		2		28		28		74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28	
Individual study								
Manual, lecture material and notes, bibliography								
Supplementary study in the library, online and in the field							5	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10	
Tutoring							7	
Exams and tests							5	
Other activities							0	

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

C1 – Operating with basic Mathematical, Engineering and Computer Science concepts

C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems

C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems

C1.3 – Building models for various components of computing systems

Cross	N/A
Comp	

7. Discipline objectives (as results from the key competences gained)						
7.1	General objective	To learn how to use a general purpose high level programming language for writing programs				
7.2	Specific objectives	 To understand a small-sized problem stated in a natural language, and develop a solution as a computer program. To understand code written by other programmers and reason critically about them. To design and implement computer programs in C using the structured/modular approach. To learn a good programming style. To determine the causes of programming errors and correct them 				

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction. Computing. Program Systems. Programming Languages		
2	Stages of Problem solving Using Computers. Algorithm – Definition, Properties		
3	Algorithm Description in Pseudocode		
4	Algorithm component modules. Program. Procedure. Function		
5	Foundations of C language. Simple data types, Constants, Variables, Functions.		
	C preprocessing		
6	Digital Representations for C data. Initializations		
7	Standard I/O in C. C Expressions		
8	C Statements and Flow Control. Pointers. Memory Allocation. Midterm		
9	Functions (Structure, Invocation, Parameter passing, Functions as parameters,		
	Variable scope). Functions for character processing		
10	Recursion. Mechanism and Examples		
11	File Handling. High and Low Level I/O		
12	On Debugging and Testing C Programs		
13	Sample Programs Explained. (Combinatorial generation. Simple Sorting		
	Algorithms)		
14	Review		

- 1. Paul and Harvey Deitel, C: How to program, Pearson Education, 6ed, 2010
- 2. K.N. King, C Programming: A modern Approach, W.W. Norton, 2008

- Stephen Prata, C Primer Plus, Sams, 5ed, 2004
 Brain W. Kernighan, Dennis M. Ritchie The C Programming Language, Prentice Hall, Inc., 1988.
 William H. Press Numerical Recipes in C The Art of Scientific Computing freely available on the Web (same address)

8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Pseudo code. Interactive Development Environments for C. Setting up and Using		
	Codeblocks IDE		
2	Simple IO in C		PCs
3	Expressions in C		equipped
4	Statements in C	Tutoring,	with
5	Functions. Debugging C programs	discussions, and	MinGW
6	Modular Programming	assisted program	C and
7	Pointers and Memory Allocation in C	development	Code-
8	Recursion]	blocks
9	String manipulation]	IDE
10	Structures, Unions, Enumerations		
11	High level IO in C. Debugging C programs	1	

12	Low Level IO in C	
13	Tracing, Testing and Debugging C programs	
14	Laboratory test	
Biblio	ography	
1	. Moodle site for course available at: https://193.226.5.110	

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course						
Applications						
10.4 Minimum	stano	lard of performance				
Correct solution	ns for	min. 60% of the exam topics and appli	cation	S		

Course responsible As.dr.eng. Marius Joldos

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	6.

2. Data about the subject

2.1	Subject name					Physi	ics				
2.2	Subject area					Comp	puter Science a	nd Information	Tech	nology	
2.3	Course respons	ible/le	ectur	er		Asso	c. prof. dr. Rad	u Fechete			
2.4	Teachers in cha	rge o	f app	lications		As. d	rd. Mihai Gabo	or; Research As	. drd.	Moldovan Dumitr	ita
2.5	Year of study	I	2.6	Semester	1	2.7	Assessment	Colloquium	2.8	Subject category	DF/OB

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hou	rs / v	veek.]]	hours	s / se	mest	ter]		
			S	L	P		S	L	P			
1	Physics	3	-	1	-	42	-	14	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	3	3.3	applications	1
3.4 Total hours in the teaching plan	56	3.5	of which, course	42	3.6	applications	14
Individual study							Hours
Manual, lecture material and notes, bibliograp	hy						16
Supplementary study in the library, online and	in the fie	ld					10
Preparation for seminars/laboratory works, ho	mework, 1	reports	, portfolios, essays				14
Tutoring							14
Exams and tests							4
Other activities							-

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Good knowledge in high school physics
		Good knowledge in high school mathematics
		Some knowledge in operating computers (Word, Power Point, Excel)
4.2	Competence	To know how to plot a graph on millimeter graph paper, use of scientific
		calculator, to work in team.

5. Requirements (where appropriate)

5.1	For the course	Blackboard, Multi-media projector.
5.2	For the applications	Equipment from Physics laboratory.

6. Specific competences

C1 - Operating with basic Mathematical, Engineering and Computer Science	ice concen	Science	r Scie	omnuter	l Coi	and	eering	Fnoir	-matica	Math	hasic	with	neratino	C1 - 0	
--	------------	---------	--------	---------	-------	-----	--------	-------	---------	------	-------	------	----------	--------	--

C1 – Operating with basic Mathematical, Engineering and Computer Science concepts
C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems

C1.3 – Building models for various components of computing systems

C1.5 – Providing a theoretical background for the characteristics of the designed systems

တ္	J/A
ss	
Cro	
con	

7.101	scipinie objectives (as results from the	key competences gained)							
7.1	General objective	To identify, understand and explain the physical phenomenon.							
		To identify the parts of a practical laboratory work and to explain how does							
		it work using the theoretical concepts from the abstract.							
		To measure different type of quantities using different devices.							
		To process the experimental data and to determine based on them different							
		physical quantities. To plot graphs and to determine different quantities							
		using it. To solve problems using theoretical criteria on different physical							
		phenomenon already studied.							
7.2	Specific objectives	The students must know how to use: a multi-voltmeter; a frequency							
		generator; a calliper and a micrometre; a thermometer with mercury and							
		digital.							

8. Contents

8.1. l	Lecture (syllabus)	Teaching methods	Notes
1	Introductions; Basics of kinematics: velocity, acceleration, linear motions,		
	curvilinear motions, circular motion.		
2	Dynamics laws, conservations laws: linear momentum, kinetically momentum,		
	energy		
3	Oscillatory motion: linearly harmonically oscillator, dumped oscillations, forced		
	oscillations, resonance, Superposition of parallel and perpendicular oscillations		
4	Barometric equations. Boltzmann distribution function. Waves. Wave function.		
	Differential equation, Characteristic phenomena: reflection, refraction,		
	interference, diffraction, dispersion, absorption		
5	Elastic waves. Longitudinal waves in solids, liquids and gases. Wave intensity.		
	Acoustics: sounds quality, closed chambers acoustics, sound reverberation,	Oral presentation,	
	Doppler-Fizeau effect, ultrasounds	discussion,	Students
6	Electromagnetic waves: velocity, transversally, intensity, and range. Photometrical	problematization,	are
	quantities. Polarization of light.	notes on	encourage
7	Photonic optics: thermal radiation, photoelectrical effect, Compton effect, light	blackboard,	d to ask
	pressure	multimedia	questions
8	Waves attached to particles. Davisson-Germer experiment. Wave group.	presentation	
	Schrödinger equation. Wave function properties. Potential gap. Potential barrier		
9	Hydrogen atom. Quantum numbers. Spin quantic number (magnetic loop,		
	magnetic moment, orbital magnetic moment).		
10	Experimental proves of energy quantifications. Quantum transitions theory. Laser.		
	Holography		
11	Electrons in solid body. Energy bands. Metals. Electrically conductibility		
12	Hall effect. Contact potential difference. Thermoelectrically effect. Peltier effect		
13	Intrinsic semiconductors. Extrinsic semiconductors. p-n Junction. Transistor.		
14	Magnetic properties of solid body: magnetic moment, orbital magnetic moment,	1	
	diamagnetism, paramagnetism, ferromagnetism. Superconductibility		
Ribli	Ogranhy	•	

- 1 R. Fechete, Fundamental physics for engineers, course notes.
- 2 E. Culea, S. Nicoara, Fundamentals of Physics, RISOPRINT, Cluj-Napoca 2004
- 3 R. Fechete, Elemente de Fizica pentru Ingineri, Ed. UTPress, 2008.
- 4 I.Ardelean, Fizica pentru ingineri, Ed. UTPres, 2005.
- 5 I. Coroiu, E. Culea, Fizica I, Ed. UT. Press, 1999.

8.2. <i>A</i>	Applications (Laboratory)	Teaching methods	Notes
1	Longitudinal and transverse standing waves	Practical work in	Students
2	Polarizations of light	the laboratory,	are asked
3	Optical spectroscopy	Problematization,	and
4	The study of photoelectrical effect	discussions	encourag

5	The study of thermoelectrically effect	ed to ask
6	The study of Hall Effect	questions
7	The determination of the energy gap of a semiconductor	

Bibliography

- 1. R. Fechete, Fundamental physics for engineers, course notes.
- Radu Fechete, Ramona Chelcea, Dumitrița Moldovan, Simona Nicoară, Ilioara Coroiu, Codruța Badea, Eugen Culea, Ioan Cosma, Nicolae Şerban, Fizică: Îndrumător de laborator, EDITURA U.T.PRESS, Cluj-Napoca, Romania, 2014, ISBN: 978-973-662-952-5.
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Course	The ability to answer to theoretical questions and to solve practical	Written test (mark T) and oral	
	problems	presentation of a specific task (mark R)	T is 60% R is 30%
Applications The presence is compulsory (100%). The activity during classes is appreciated		Questions on each class (mark SL)	10%

The final credit can be received only if each of the mark's components is fulfilled: N≥5 AND T≥5 AND R≥5 AND SL≥5.

Course responsible Assoc. prof. dr. Radu Fechete

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	7.

2. Data about the subject

2.1	Subject name Foreign Language I (English, French, German)											
2.2	J 2											
2.3	Course respons	ible/l	ectur	er								
2.4	Teachers in cha	rge o	f app	lications		Asist. drd. Ema Adam, adam@lang.utcluj.ro						
							.drd. Monica N	legoescu, Negoe	escu@	mail.utcluj.ro		
						Asist.dr. Sanda Pădurețu Sanda.Paduretu@lang.utcluj.ro						
						Asist.dr. Maria Olt maria.olt@lang.utcluj.ro						
						Asist.dr. Cecilia Policsek <u>cecilia.policsek@lang.utcluj.ro</u>						
						Asist.dr. Florina Codreanu <u>codreanu.florina@gmail.com</u>						
						Lect.	dr. Mona Tripe	on Mona.Tripor	ı@lar	<u>ng.utcluj.ro</u>		
	Asist. drd. Aurel Bărbînță Aurel. Barbinta@lang.utcluj.ro											
	Asist.dr. Adina Forna adina.forna@yahoo.com											
2.5	Year of study	I	2.6	Semester	1	2.7	Assessment	Colloquium	2.8	Subject category	DC/OB	
	·							•				

3. Estimated total time

Sem.	Subject name	Lecture	App	licat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hou	rs / v	veek.]	[hours	s / se	mes	ter]		
			S	L	P		S	L	P			
1	Foreign Language I (English, French, German)		2	•		-	28	1	•	24	52	2

2.1 Noushan of harman man and	1 2	2.2	a.C1.: a1		2.2	1:4:	1 2	
3.1 Number of hours per week	2		of which, course	-	3.3	applications	2	
3.4 Total hours in the teaching plan	28	3.5	of which, course	-	3.6	applications	28	
Individual study								
Manual, lecture material and notes, bibliography							8	
Supplementary study in the library, online and in the field							4	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							8	
Tutoring								
Exams and tests							4	
Other activities								

3.7	Total hours of individual study	24
3.8	Total hours per semester	52
3.9	Number of credit points	2

4. Pre-requisites (where appropriate)

4.1	Curriculum	A2/B1 according to the Common European Framework for Languages
4.2	Competence	Team work

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Seminar attendance compulsory

6. Specific competences

	N/A
Professional competences	
Cross	CT2 – Identifying, describing and conducting processes in the projects management field, assuming different roles inside the team and clearly and concisely describing, verbally or in writing, in Romanian and in an international language, the own results from the activity field.

7.1	General objective	Development of communicative competence in an engineering professional context
7.2	Specific objectives	 Mastering basic vocabulary and language structures typical of sciences studied Development of the skill of writing short technical texts

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1			
Biblio	ography	<u> </u>	•
8.2.	Applications (Seminars)	Teaching methods	Notes
1	Introduction to languages for specific purposes		
2	Mathematics. Algebraic Formulae		
3	Geometry. Shapes and dimensions		
4	Infrastructure and manufacturing processes. Process description	Communication	
5	Safety norms.	Conversation,	
6	Writing instructions. Warnings. User guides	improving the reading, writing,	
7	Description of devices. Sensors	speaking,	
8	Location. Calculi and measurements	listening skills,	
9	Properties of materials. Description	working in pairs	
10	Forces and their laws.	and groups	
11	Cause and effect, Discourse markers.	and groups	
12	Green technologies. Design and project evaluation		
13	Description of an operation and a process.		
14	Final test		

Bibliography

- 1. Munteanu, S-C. (2004) Reading skills For Engineering Students, UTPress, Cluj-Napoca.
- 2. Granescu, M. et. al. Students' Grammar Of English, UTPress, Cluj-Napoca, 2001.
- 3. Bonamy, D. Technical English 1-2, Longman, London
- 4. Tripon, Mona: Faszination Technik. Sprachtrainer Deutsch für Studenten technischer Universitäten. Editura Napoca Star, Cluj-Napoca, 2012. ISBN 978-973-647908-3
- 5. Odou M., Informatique.com, Clé international, 2010
- 6. Constantin Paun, Limba franceză pentru știință și tehnică, EdituraNiculescu, Bucuresti, 1999
- 7. Vlaicu, R., Grammaire du français scientifique et technique, Cluj-Napoca, UTPRESS, ISBN 2007 973-662-2258-4

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Mastering a foreign language will help students in a more flexible integration in the labour market, and have improved personal development. The introduction in the language for specific purposes will facilitate reading more documents in the field of study.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		-				
Applications		Assignments and tests are corrected and marked if submitted in due time. The undergraduate will be allowed to sit in the final test if he/she attends seminars in a proportion of 80% of the time.		Written test, Oral test		100%.
10 1 75		1 - 1 - C C				

10.4 Minimum standard of performance

The undergraduate will be allowed to sit in the final test, if he/she attends seminars in a proportion of 80% of the time.

Final score: attendance= 1pct, written test =5 pct, oral test =4 pct.

Pass score is received if 60 % of both tests is produced by the undergraduate.

Director Departament Prof. dr. ing. Rodica Potolea Titular de curs Conf.univ.dr. Marinela Grănescu Titular de seminar / laborator /

proiect

Asist. drd. Ema Adam,
Asist.drd. Monica Negoescu,
Asist.drd. Sanda Pădurețu
Asist.dr. Maria Olt
Asist.dr. Cecilia Policsek
Asist. drd. Aurel Bărbînță
Lect. dr. Mona Tripon
Asist. dr. Forina Codreanu

Asist. dr. Adina Forna

1.Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca					
1.2	Faculty	Automation and Computer Science					
1.3	Department	Computer Science					
1.4	Field of study	Computer Science and Information Technology					
1.5	Cycle of study	Bachelor of Science					
1.6	Program of study/Qualification	Computer Science/ Engineer					
1.7	Form of education	Full time					
1.8	Subject code	8.					

2. Data about the subject

2.1	Subject name				Sport I							
2.2	Subject area				Com	Computer Science and Information Technology						
2.3	Course respons	ible/l	ectur	er		Asso	c. prof. Marin l	Dumitrescu, Ph	D, <u>m</u>	arind@efs.utcluj.ro	<u>)</u> ,	
2.4	4 Teachers in charge of applications						Assoc. prof. Viorel Moisin, PhD, Lecturer Alina Rusu, PhD, Lecturer Mihai Olanescu, PhD student, As. prof. Bogdan Tanase					
2.5	Year of study	I	2.6	Semester	1		Assessment	verification		Subject category	DC/OB	

3. Estimated total time

Sem	. Subject name	Lecture Applications		Lecture	Applications			Individual study	TOTAL	Credit		
		[hours / week.]			[hours / semester]							
			S	L	P		S	L	P			
1	Sport I	-	2	-			28		-	-	28	1

3.1 Number of hours per week	2	3.2	of which, course	-	3.3	applications	2	
3.4 Total hours in the teaching plan	28	3.5	of which, course	-	3.6	applications	28	
Individual study								
Manual, lecture material and notes, bibliography								
Supplementary study in the library, online and in the field							-	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							-	
Tutoring							-	
Exams and tests							-	
Other activities						-		

3.7	Total hours of individual study	-
3.8	Total hours per semester	28
3.9	Number of credit points	1

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	physically fit, necessary skills, knowledge, skills and abilities gained in classes
		I-AII

5. Requirements (where appropriate)

5.1	For the course	Muncii Blvd, no.103-105, Cluj-Napoca,
		Politehnica Swimming Complex
5.2	For the applications	Sports Hall, Muncii Blvd, no.103-105, Cluj-Napoca
		Outdoor and Fitness - Complex Polytechnic

6. Specific competences

	N/A	
nal		
Professional		
fes	4	
Pro		

Cross competences

CT2 – Identifying, describing and conducting processes in the projects management field, assuming different roles inside the team and clearly and concisely describing, verbally or in writing, in Romanian and in an international language, the own results from the activity field.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Harmonious physical development Maintain health at a high standard
7.2	Specific objectives	 Capacity development effort Learning and motor skills development Education volitional qualities

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes				
1	-						
Biblio	Bibliography						
8.2. A	Applications (Seminars)	Teaching methods	Notes				
1-2	Discipline demands and promotion criterion						
3-4	Testing of movement skills, capacities and knowledge accumulated in secondary						
	and high school						
5-6	Adaptation with physical effort						
7-8	Learning of technical process (methods) accessible and possible						
9-	Repetition (improving) of technical process (methods).	interactive					
10							
11-	Learning new technical process (methods)						
12							
13-	Semestrial verification						
14							

Bibliography

- 1. Curs de Educație fizică Litografiat UTC-N
- 2. Dezvoltare fizică generală pentru studenți UTC-N
- 3. Cultură fizică pentru tineret UTPRES
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Sports activity there in the curriculum of universities and faculties in the country and abroad. Content is consistent with the expectations of professional associates and employers epistemic community representative of the afferent program.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade		
Course		-		-				
Applications		70% + 30% Frequency Active Participation, sports skills and advances		By passing control samples				
10.4 Minimum standard of performance								

Course responsible Assoc. prof. Marin Dumitrescu