Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4	Field of study	Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/Engineer				
1.7	Form of education	Full time				
1.8	Subject code	50				

2. Data about the subject

2.1	Subject name				Infor	Information Systems						
2.2	2.2 Subject area					Comp	Computer Science and Information Technology					
2.3	Course respons	ible/l	ectui	er		Asso	Assoc. prof. dr. eng. Ovidiu Pop – Ovidiu.Pop@cs.utcluj.ro					
2.4	Teachers in cha	irge o	f app	olications		As.d	As.drd. eng. Cornelia Melenti – Cornelia.Melenti@cs.utcluj.ro				j.ro	
2.5	Year of study	IV	2.6	Semester	8	2.7	Assessment	exam	2.8	Subject category	DS/OB	

3. Estimated total time

Sem	Subject name	Lecture	App	olicat	ions	Lecture	e Applications		Individual study	TOTAL	Credit	
		[hours / week.]		.]	[hours / semester]				ter]			
			S	L	P		S	L	P			
8	Information Systems	2	-	2	-	28	-	28	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							
Manual, lecture material and notes, bibliograp	hy						20
Supplementary study in the library, online and in the field							10
Preparation for seminars/laboratory works, ho	mework, 1	reports	s, portfolios, essays				5
Tutoring							
Exams and tests							5
Other activities						8	
27 T-4-11							•

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

Pre-requisites (where appropriate)

	" The requisites (where appropriate)						
4.1	Curriculum	Software engineering, database design					
4.2	Competence						

Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

- C3 Problems solving using specific Computer Science and Computer Engineering tools
- C3.1 Identifying classes of problems and solving methods that are specific to computing systems
- C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results
- C3.4 Evaluating, comparatively and experimentally, the available alternative C3.4 - Evaluating, comparatively and experimentally, the available alternative solutions for performance
 - C3.5 Developing and implementing informatic solutions for concrete problems

Ses	V/A	
Cross		
.шоэ)		

7.1	General objective	Improve requirements management and design abilities of students in their senior year.
7.2	Specific objectives	Apply RUP metholologies for requirements management and design
		patterns

8. Contents

8.1. Le	ecture (syllabus)	Teaching methods	Notes
1	Requirements Maturity Management		
2	RUP – Overview and Best Practices		
3	RUP –Iterative Development		
4	The Requirements Discipline		
5	Capturing Requirements: Use Cases (I)		
6	Capturing Requirements: Use Cases (II) – Best Practices		
7	Analysis Model Artifacts: Vision, Glossary, Supplementary Specification (I)		
8	Analysis Model Artifacts: Vision, Glossary, Supplementary Specification (II)		
9	Domain Model		
10	GRASP Design Patterns (I)		
11	GRASP Design Patterns (II)		
12	Use Case Realizations with GRASP Design Patterns (I)		
13	Use Case Realizations with GRASP Design Patterns (II)		
14	Use Case Realizations with GRASP Design Patterns (III)		

Bibliography

- 1. Craig Larman Applying UML and Patterns (2003)
- 2. Alistair Cockburn Writing Effective Use Cases (2002)

8.2. A	Applications (Laboratory)	Teaching methods	Notes				
1	Requirements Artifacts: Vision, Glossary, Supplementary Specification	C4 14					
2	Generate a Vision document based on a RUP template	Students are					
3	Generate a Supplementary Specification document based on a RUP template	encouraged to use their knowledge					
4	Requirements Artifacts: Use Cases	in implementation					
5	Generate a Use Case document based on a RUP template	projects					
6	Generate an Analysis Model	projects					
7	Lab Assessment						
Biblio	Bibliography						

- 1. Keneth Rubin Essential Scrum (2012)
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade			
Course				Written exam		80%			
Applications				Problem solving		20%			
10.4 Minimum	10.4 Minimum standard of performance								

Course responsible Assoc.prof. dr. eng. Ovidiu Pop Head of department Prof.dr.eng. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	51.1

2. Data about the subject

	2. Data accurt	110 5 6	oject								
2.1	Subject name			Knov	Knowledge-Based Systems						
2.2	2.2 Subject area				Comp	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Lect.	Lect. dr. eng. Adrian Petru Groza – Adrian. Groza@cs.utcluj.ro					
2.4	2.4 Teachers in charge of applications				Lect. dr. eng. Anca Marginean Anca.Marginean@cs.utcluj.ro				<u>ro</u>		
2.5	Year of study	IV	2.6	Semester	8	2.7	Assessment	exam	2.8	Subject category	DS/OP

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	P		S	L	P			
8	Knowledge-Based Systems	2	-	2	-	28	-	28	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours
Manual, lecture material and notes, bibliograp	hy						28
Supplementary study in the library, online and in the field						14	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							6
Tutoring							
Exams and tests							
Other activities							
3.7 Total hours of individual study 48						•	

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

	··· ··· ··· ··· ··· ··· ··· ··· ···					
4.1	Curriculum	Introduction to Artificial Intelligence, Intelligent Systems				
4.2	Competence					

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

- C3 Problems solving using specific Computer Science and Computer Engineering tools (1 credit)
- C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results
- C3.5 Developing and implementing informatic solutions for concrete problems
- C5 -Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (1 credit)
- C5.2 Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field
- C5.5 Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

C6 - Designing intelligent systems (2 credits)
C6.1 Describing the components of intelligent systems
C6.2 Using domain-specific tools for explaining and understanding the functioning of intelligent systems
C6.3 Applying the fundamental methods and principles for specifying solutions for typical problems using intelligent
C6.4 Choosing the criteria and evaluation methods for the quality, performances and limitations of intelligent systems
C6.5 Developing and implementing professional projects for intelligent systems
N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Understanding conceptual instrumentation for knowledge representation and reasoning
7.2	Specific objectives	Applying various knowledge-based techniques aiming to increasy the quality of software systems

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction.	Slides,	
2	Application case analysis: representative scenarios from different domains.	Various student	
3	Rule-based systems: representation, reasoning methods.	engagement	
4	Fuzzy systems: fuzzy sets, fuzzy inference, fuzzy expert systems	techniques	
5	Knowledge acquisition: conceptual knowledge, data mining, clustering.	New examples	
6	Case based reasoning: representation of cases, retrieval of cases, methods	Quick individual	
7	Reasoning on knowledge: knowledge representation, epistemic logics	work (1 minute)	
8	Model-based reasoning: representation of models, temporal logics.	Homework after	
9	Reasoning with restrictions: representation and logics	each class	
10	Description logics: concepts, roles, instances, classes.	dicusssed at the beginning of the	
11	Ontologies: formalisms, reasoning methods.	next class	
12	Ontology engineering: ontology design and evaluation	next class	
13	Rules and ontologies: representation, reasoning methods		
14	Introduction.		

Bibliography

- 1. The Description Logic Handbook, Baaderand al., Cambridge, 2003
- 2. Principles of Knowledge Representation and Reasoning, Cohn, Schubert, Shapiro. Morgan Kaufman, 1998.
- 3. A Semantic Web Primes, second edition, M Grigoris Antoniou and Frank van Harmelen, IT Press, 2008
- 4. Discourses on Social Software, Van Eijck and Verbrugge (eds.), Amsterdam University Press, 2009
- 5. Introduction to data mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison-Wesley, 2006

8.2. A	Applications (Laboratory)	Teaching methods	Notes			
1	Introduction to the documentation for the assignment					
2	Studying the documentation for the assignment					
3	Studying the design of the tool					
4	Practicing the exercises provided in the archive					
5	Understanding the main parts of the software	Student				
6	Running the systemby tracing at high level	Engagement				
7	Mastering the running of the systemand the examples provided techniques					
8	New examples Conceptual design of new examples Midterm					
9	Code for the new examples assessment					
10	Testing and debugging the new cases	assessment				
11	Measuring the performance of the system					
12	Documenting the new scenarios					
13	Comparison of the differences between the cases developed and those provided					
14	Final evaluation of the exercises developed					

Bibliography

- 1. Groza. Lecture notes, slides available at http://cs-gw.utcluj.ro/~adrian
- 2. Various Knowledge Based Tools from the WWW
- 3. RacerPRO Manual, FranzAllegro, 2014.
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the class is similar to the contents taught at other international universities.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Understanding conceptual		Midterm assessment,		70
		instrumentation for knowledge		Writing exam		
		representation and reasoning, Class				
		participation, Homework				
Applications		Metrics for ontology evaluation		Ontology Building		30
				Competition		
10.4 Minimum standard of performance						
		-				

Course responsible Assoc. prof. dr. eng. Adrian Groza Head of department Prof.dr.eng. Rodica Potolea

1. Data about the program of study

	1 5	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	51.2

2. Data about the subject

2.1	Subject name				Parallel Programming							
2.2	2.2 Subject area			Comp	Computer Science and Information Technology							
2.3	Course respons	ible/l	ectur	er		Prof. dr. eng. Alin Suciu – <u>alin.suciu@cs.utcluj.ro</u>						
2.4	Teachers in cha	irge o	f app	lications		Prof.	Prof. dr. eng. Alin Suciu – <u>alin.suciu@cs.utcluj.ro</u>					
2.5	Year of study	IV	2.6	Semester	8	2.7	Assessment	exam	2.8	Subject category	DS/OP	

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	are Applications		Individual study	TOTAL	Credit	
		[hours / week.]			.]	[hours / semester]						
			S	L	P		S	L	P			
8	Parallel Programming	2	-	2	-	28	-	28	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							
Manual, lecture material and notes, bibliography							18
Supplementary study in the library, online and in the field							12
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							18
Tutoring							0
Exams and tests							0
Other activities							0

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	**/
	4.1	Curriculum	Computer Programming (C), OO Programming (Java/C#), Logic Programming
			(Prolog), Operating Systems
ſ	4.2	Competence	All competences related to the above disciplines

5. Requirements (where appropriate)

5.1	For the course	Blackboard, Projector, Computer				
5.2	For the applications	Multicore computers, Specific Software				

6. Specific competences

- C3 Problems solving using specific Computer Science and Computer Engineering tools
- C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results
- C3.5 Developing and implementing informatic solutions for concrete problems
- C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems
- **C5.1** Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator
- C5.2 Using interdisciplinary knowledge for adapting an information system to application domain requirements
- C5.3 Using fundamental principles and methods for security, reliability and usability assurance of computing

	systems C5.4 - Adequate utilization of quality, safety and security standards in information processing C5.5 - Realization of a project including problem identification and analysis, design and development, while proving the understanding of the basic quality needs and requirements
Cross	N/A

7.1	General objective	Developing the ability to identify parallelism in a given problem, and to take advantage of this parallelism using various methods and technologies for parallel programming
7.2	Specific objectives	 Understanding the performance parameters of parallel algorithms Ability to implement parallel algorithms using multithreading technologies (in C, Java, C#, Prolog, OpenMP) Ability to implement parallel algorithms based on the VSM model (Linda) Ability to implement parallel algorithms based on message passing (PVM, MPI) Basic knowledge of the cutting edge developments in the field (Quantum Computing, DNA Computing)

8. Contents

8.1. Le	ecture (syllabus)	Teaching methods	Notes
1	Introduction, Types of Parallelism, Classification, Applications		
2	Parallel Algorithms, Performance Parameters, Amdahl's Law, Gustafson's Law		
3	Processes (C/UNIX), Communication, Synchronization	1	
4	Threads (Java, C#, Prolog), Communication, Synchronization	1	
5	OpenMP (1)]_	N/A
6	OpenMP (2)	Lectures using	
7	OpenMP (3)	blackboard and	
8	Linda, Parallelism based on Virtual Shared Memory	projector, interactive discussions	
9	Message Passing Programming, PVM, MPI		
10	Programming the Graphics Processor (GPU)	uiscussions	
11	Sorting Networks		
12	Cryptography and Cryptanalysis concepts		
13	Grid Computing, Cluster Computing		
14	Quantum Computing and DNA Computing		

Bibliography

- 1. Peter Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann, 2011.
- 2. Barbara Chapman, Gabriele Jost and Ruud van der Pas, Using OpenMP Portable Shared Memory Parallel Programming, MIT Press, 2007 (online).
- 3. I. Foster, Designing and Building Parallel Programs, Addison Wesley, 1995 (online).
- 4. L. Sterling, E. Shapiro, The Art of Prolog, MIT Press, 1994.

8.2.	Applications (Laboratory)	Teaching methods	Notes	
1	Imperative Programming in C – review, Solving highly parallelizable problems			
2	Logic Programming in Prolog – review, Solving highly parallelizable problems			
3	Processes (C/UNIX)	Practical		
4	Threads (C)	laboratory works /	N/A	
5	Threads (Java, C#)	programming		
6	Threads (Prolog)	exercises using		
7	Programming in OpenMP (1)	specific software		
8	Programming in OpenMP (2)	tools		
9	Programming in OpenMP (3)			
10	Programming in Linda			

11	Programming in MPI	
12	Sorting Networks	
13	Cryptographic Algorithms	
14	Final Evaluation	

Bibliography

- 1. Peter Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann, 2011.
- 2. Barbara Chapman, Gabriele Jost and Ruud van der Pas, Using OpenMP Portable Shared Memory Parallel Programming, MIT Press, 2007 (online).
- 3. I. Foster, Designing and Building Parallel Programs, Addison Wesley, 1995 (online).
- 4. L. Sterling, E. Shapiro, The Art of Prolog, MIT Press, 1994.
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the course is aligned to the latest developments in the field and responds to both the development in the multicore / other parallel hardware technologies and the requirements coming from the industry.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course		Knowledge assimilated from the course material, interactivity during lectures		Written exam (E)		70 %	
Applications		Ability to solve problem using parallel programming techniques and technologies		Laboratory assessment (L)		30 %	
10.4 Minimum standard of performance							
$E \ge 50\%$ and L	$E \ge 50\%$ and $L \ge 50\%$						

Course responsible Prof. dr. eng. Alin Suciu

Head of department Prof.dr.eng. Rodica Potolea

Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	52.1

2. Data about the subject

2.1	Subject name			Data	DataBase Design						
2.2	Subject area			Comp	Computer Science and Information Technology						
2.3	Course responsible/lecturer				S.l. d	S.l. dr. eng. Călin Cenan – Calin.Cenan@cs.utcluj.ro					
2.4	Teachers in cha	irge o	f app	olications		Sl. di	r. eng. Delia M	itrea – Delia.Mi	trea@	cs.utcluj.ro	
2.5	Year of study	IV	2.6	Semester	8	2.7	Assessment	exam	2.8	Subject category	DS/OP

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]								
			S	L	P		S	L	P			
8	DataBase Design	2	•	2	•	28	•	28	·	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours
Manual, lecture material and notes, bibliography							12
Supplementary study in the library, online and in the field							
Preparation for seminars/laboratory works, ho	mework, 1	reports	s, portfolios, essays				12
Tutoring							1
Exams and tests							3
Other activities							
0.7 5 11 6: 1: 1 1 1		40					•

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

Pre-requisites (where appropriate)

	The requisites (where appropria	
4.1	Curriculum	Database
4.2	Competence	

Requirements (where appropriate)

5.1	For the course	Board, video projector, computer; student present in mandatory 50% of days for admission to the final exam
5.2	For the applications	Computers, specific software; student present in mandatory 100% of days for admission to the final exam

6. Specific competences

- C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems
- C5.1 Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- C5.2 Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field
 C5.3 Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the
- computing systems
- C5.4 Proper utilization of the quality, safety and security standards in the field of information processing

	C5.5 - Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
Cross	N/A

7.1	General objective	Developing general skills in databases design and database programming
7.2	Specific objectives	Assimilate theoretical knowledge on relational databases design and SQL language extensions Presentation of database transactions Getting practical skills for designing and programming databases

8. Contents

8.1. Le	ecture (syllabus)	Teaching methods	Notes
1	Main steps to design a database; Data vs. Information	PDF & PPT	
2	Historical roots of database; Types of Databases	Presentations;	
3	Business Rules; Data Models: Hierarchical, Network, Relational, Entity-Relationship,	Demonstrations	
	Object Oriented	and model	
4	Degrees of Data Abstraction; Conceptual Model; Internal Model; External Model;	presentations on	
	Physical Model	board;	
5	Entity-Relationship concepts and terminology; • Entity-Relationship diagrams;	small exercises to	
_	Tables; Keys, Attribute specifications; Data types; Data dictionary; Integrity constraints	increase	
6	Relationships; Connectivity and Cardinality; Strength and Participation; Entity Supertypes	interaction	
7	and Subtypes Developing on EP Diagrams Optimization of Database. Nameliastics.		
7	Developing an ER Diagram; Optimization of Database – Normalization; Functional dependencies, 1NF, 2NF, 3NF, Boyce-Codd Normal Form (BCNF); 4NF, 5NF;		
	Denormalization		
0			
8	Constraints, Indexes; Data Definition Commands; Data Manipulation Commands		
9	Extended SQL – Transact-SQL; Writing Stored Procedures; Triggers		
10	Data / Information; Systems development life cycle: Planning, Analysis, Detailed Systems		
	Design, Implementation		
11	Transaction Management and Concurrency Control; Transactions; Logs; Locks		
12	Data Warehouse - Need for Data Analysis; Decision Support Systems; Data Warehouse		
	Architectures		
13	Facts, Dimensions, Attributes, Attribute Hierarchies; Data Mining		
14	Database administration; Security		

Bibliography

- 1. Alexandru Leluțiu Perenitatea Concepteleor Promovate de BAZELE de DATE, Ed. Albastra, 2003
- 2. Raghu Ramakrishnan and Johannes Gehrke Database Management Systems, McGraw-Hill Science, 2002
- 3. Peter Rob and Carlos Coronel Database Systems: Design, Implementation, and Management, Crisp Learning, 2006
- 4. Rebecca M. Riordan Designing Relational Database Systems, Microsoft Press, 1999
- 5. Matt Shepker Writing Stored Procedures for Microsoft SQL Server, Sams, 2000
- 6. Mark Spenik and Orryn Sledge Microsoft SQL Server 2000 DBA Survival Guide, Sams, 2001

8.2. A	Applications (Laboratory)	Teaching methods	Notes
1	Database and DataBase Management Systems - Microsoft SQL Server - Project domains	Exposure and	Compute rs, MS SQL Server, Oracle
2	Developing ER diagrams - Microsoft Visio		
3	Visio – SQL Server synchronization – First evaluation of project work: Domain analysis		
4	Design of Database Structures – Tables, Keys, Relationships		
5	Design of Database Structures – Indexes, Constraints, Views	applications	
6	Update Data; Query Data - Second evaluation of project work: Database structures		
7	Simple Stored Procedures; Functions		
8	Stored Procedures - Cursors		

9	Triggers	
10	Transactions	
11	Data Warehouse	
12	Third evaluation of project work	
13	MS SQL Server administration	
14	Final laboratory evaluation - Final project evaluation	

Bibliography

- Alexandru Leluțiu Perenitatea Concepteleor Promovate de BAZELE de DATE, Ed. Albastra, 2003
- Raghu Ramakrishnan and Johannes Gehrke Database Management Systems, McGraw-Hill Science, 2002
- Peter Rob and Carlos Coronel Database Systems: Design, Implementation, and Management, Crisp Learning, 2006
- Rebecca M. Riordan Designing Relational Database Systems, Microsoft Press, 1999
- Matt Shepker Writing Stored Procedures for Microsoft SQL Server, Sams, 2000
- Mark Spenik and Orryn Sledge Microsoft SQL Server 2000 DBA Survival Guide, Sams, 2001
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Database Design is an advanced topic in Computer Engineering and Information Technology field, combining fundamental aspects and practical software tools. Explaining to students the principles of database designing and database programming. Course content it is similar to database courses in other universities in the country and abroad.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Solving 4 problems and answers to		2.5 hours written		60%
		questions of theory		evaluation		
Applications	Applications Implementarea unei aplicatii			Ongoing evaluation		40%
				and a final presentation		
10.4 Minimum						

Solving practical laboratory work and projects, designing databases and a database programming; solving the problems and other subjects presented at the examination

Course responsible S.ls. dr. eng. Calin Cenan Head of department Prof.dr.ing. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	52.2

2. Data about the subject

_	=· =												
	2.1	Subject name			Comp	Computer Network Design							
	2.2	Subject area					Comp	Computer Science and Information Technology					
	2.3	Course respons	ible/l	ectui	er		Asso	Assoc. Prof. dr. eng. Emil-Ioan Cebuc – Emil. Cebuc@cs.utcluj.ro					
	2.4	Teachers in cha	arge o	f app	olications		Sl. D	r. Eng. Bogdar	ı Iancu – Bogda	n.Iano	cu@cs.utcluj.ro		
Γ	2.5	Year of study	IV	2.6	Semester	8	2.7	Assessment	exam	2.8	Subject category	DS/OP	
												I	

3. Estimated total time

Se	n. Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]			ter]					
			S	L	P		S	L	P			
8	Computer Network Design	2	-	2	-	28	-	28	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study	•			•			Hours
Manual, lecture material and notes, bibliograp	hy						15
Supplementary study in the library, online and in the field							
Preparation for seminars/laboratory works, ho	mework,	reports	s, portfolios, essays				13
Tutoring							2
Exams and tests							
Other activities							0
2.7 Total hours of individual study		10					

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

	· (·· trpp	/
4.1	Curriculum	Local Area Networks, 7-th semester
4.2	Competence	LAN protocols, LAN structure, LAN services

5. Requirements (where appropriate)

5.1	For the course	Projector, Blackboard, lecture room
5.2	For the applications	PC with Linux/Windows OS, Switches, routers, hardware tools, cable tester

6. Specific competences

Professional competences

C3 Problems solving using specific Computer Science and Computer Engineering tools (2 credits)

- C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their
- C3.4 Evaluating, comparatively and experimentally, the available alternative solutions for performance optimization
- C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits)
- C5.1 Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- C5.4 Proper utilization of the quality, safety and security standards in the field of information processing

N/A			
nces			
ross			
ێ			

	7.1	General objective	Knowledge and understanding of networking techniques, protocols and services
Ī	7.2	Specific objectives	Able to design simple network protocol at different OSI layer, able to
			configure networking devices at basic level

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction	Lecture, using	
2	ISO-OSI an TCP/IP Reference models + Layered structure, analogies and	PowerPoint	
	differences	presentation	
3	Physical Layer + layer functions		
4	Data link Layer + layer function, HDLC protocol		
5	Network Layer + layer function and routing, IPv4 and IPv6		
6	Transport Layer + connection oriented and connection less protocols		
7	Upper Layers + session, presentation and application layers		
8	Multiplexing + FDM, TDM, statistical TDM		
9	Packet and circuit switching, virtual circuits + Analogies, differences and		
	switches		
10	Flow control and congestion control + Stop and Wait, sliding window, token		
	bucket		
11	Distributed network services like E-mail, DNS, etc.		
12	Network security + Threats and their avoidance		
13	Cryptographic systems+symmetrical and asymmetrical systems		
14	Computer Network management + management application structure		

Bibliography

- 1. A. S. Tanenbaum, Computer Networks;
- 2. W. Stallings; Data and Computer Communications; Prentice Hall

∠.	w. Stannigs, Data and Computer Communications, Frentice Hair		
8.2. A	Applications (Laboratory)	Teaching methods	Notes
1	Sub netting and Super netting		
2	Virtual LAN's VLAN		
3	Easy IP: DHCP,NAT		
4	DNS		
5	Static routing	T 1' '1 1 1	
6	Dynamic routing	Individual and team work	
7	Security		
8	Protocol Inspector II	Interactive tutoring	
9	Network Inspector	Learn by example	
10	Application layer protocols	Leam by example	
11	Wireless I		
12	Wireless II		
13	Wireless IÎÎ		
14	Lab colloquium		
D. 11	•		

Bibliography

- 1. E. Cebuc et all, Computer Network Design Lab Guide, Editura UT Press 2005
- 2. Presentations can be found at: ftp.utcluj.ro/pub/users/cemil/prc
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Course content is according to leading textbooks, lab content is inspired from CCNA industry certification level

10. Evaluation

Course	Understands and explains network protocols, designs simple network Basic knowledge of network security and management	Written exam Problem solving Theory Admittance conditioned by successful lab colloquium	1/3 1/3
Applications	Is able to configure networking devices at basic level	Lab colloquium	1/3

10.4 Minimum standard of performance

Understands protocol stacks, flow and congestion control, network security and management issues. Configures switches and routers.

Course responsible Assoc. Prof. dr. eng. Emil-Ioan Cebuc Head of department Prof. dr. eng. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/Engineer
1.7	Form of education	Full time
1.8	Subject code	53.

2. Data about the subject

2.1	Subject name				Proje	Project Management					
2.2	Subject area				Comp	Computer Science and Information Technology					
2.3	Course responsible/lecturer					Prof.	Prof. dr. eng. Mihaela Dinsoreanu, mihaela.dinsoreanu@cs.utcluj.ro				
2.4	Teachers in cha	irge o	f app	olications							
2.5	Year of study	IV	2.6	Semester	8	2.7	Assessment	exam	2.8	Subject category	DS/OB
	•										

3. Estimated total time

Sem.	Subject name	Lecture	App	plicat	ions	Lecture	App	licat	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]				ter]				
			S	L	P		S	L	P			
8	Project Management	2	-	-	-	28	-	-	-	46	74	3

3.1 Number of hours per week	2	3.2	of which, course	2	3.3	applications	-	
3.4 Total hours in the teaching plan	28	3.5	of which, course	28	3.6	applications	-	
Individual study								
Manual, lecture material and notes, bibliography								
Supplementary study in the library, online and in the field								
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								
Tutoring							13	
Exams and tests								
Other activities								

3.7	Total hours of individual study	46
3.8	Total hours per semester	74
3.9	Number of credit points	3

4. Pre-requisites (where appropriate)

	The requisites (where appropria	
4.1	Curriculum	Software Engineering
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

- C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems
- **C5.1** Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- C5.2 Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of the application field
- C5.3 Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
- C5.4 Proper utilization of the quality, safety and security standards in the field of information processing
- C5.5 Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

		N/A					
S	nce						
Cros	pete						
	com						

7.1	General objective	Understand and apply appropriate project management techniques
7.2	Specific objectives	Acknowledge the interfaces and interdependencies between the disciplines in OOSE
		Present various project management techniques and their application in the two prominent methodologies
		Project Management Metrics and Indicators
		• Understand the risks and the factors that lead to success or failure; Risk
		Management
		Reflections of Project Management on the Software Quality

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction	Face to face	
2	PM overview	lectures,	
3	Basics of Project Management for Agile Methodologies	Powerpoint slides	
4	Basics of Project Management for Plan-driven Methodologies		
5	Planning and Tailoring the process		
6	Planning the Disciplines		
7	WBS development		
8	Time management		
9	Monitoring and Control		
10	Risk management		
11	Change management		
12	Resource management		
13	Quality management		
14	Project closure		

Bibliography

- 5. Project Management Institute, A Guide to the Project Management Body of Knowledge, 5th Edition, 2013.
- 6. Juana Clark Craig, Project Management Lite: Just Enough to Get the Job Done...Nothing More, 2012
- 7. The Unified Software Development Process (Hardcover) G. Booch, J.Rumbaugh, I. Jacobson, Addison Wesley, 1998
- 8. Software Project Management: A Unified Framework, Walker Royce, Addison Wesley
- 9. Planning Extreme Programming, Kent Beck, Addison Wesley, 2000

8.2. A	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes					
1								
Biblio	Bibliography							

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

ACM Curriculum compliant course

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade		
Course		Ability to apply appropriate PM techniques for given project situations		Written Exam		100%		
Applications								
10.4 Minimum	10.4 Minimum standard of performance							

10.4 Minimum standard of performance

Attendance of lectures >= 50%

Grade of final exam >=5

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	54.

2. Data about the subject

	Data about the subject										
2.1	Subject name			Project Elaboration Methodology							
2.2	Subject area				Computer Science and Information Technology						
2.3	Course responsible/lecturer				Conf	Conf.dr.ing.Tudor Muresan - Tudor.Muresan@cs.utcluj.ro					
2.4	Teachers in charge of applications					-					
2.5	Year of study	IV	2.6	Semester	8	2.7	Assessment	Colloquium	2.8	Subject category	DS/OB

3. Estimated total time

Sem.	Subject name	Lecture	e Applications Lecture A		Applications		Individual study	TOTAL	Credit			
		[hours / week.]			[hours / semester]							
			S	L	P		S	L	P			
8	Project Elaboration Methodology	2	-	-	-	28	-	-	-	24	52	2

3.1 Number of hours per week	2	3.2	of which, course	2	3.3	applications	-
3.4 Total hours in the teaching plan	28	3.5	of which, course	28	3.6	applications	-
Individual study							
Manual, lecture material and notes, bibliography							
Supplementary study in the library, online and in the field							
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							
Tutoring							
Exams and tests							4
Other activities							
3.7 Total hours of individual study 24							

3.7	Total hours of individual study	24
3.8	Total hours per semester	52
3.9	Number of credit points	2

4. Pre-requisites (where appropriate)

	The requisites (where uppropriate	
4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

- C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems
- **C5.1** Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- C5.2 Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field
- C5.3 Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
- C5.4 Proper utilization of the quality, safety and security standards in the field of information processing
- C5.5 Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

y.	N/A	
S		
Cross		
0		
ان		
7. Di	scipline objectives (as results from the	key competences gained)
7.1	General objective	1. Ability to write a project proposal
		2. Ability to search literature and critical evaluation

7.1	General objective	1. Ability to write a project proposal		
		2. Ability to search literature and critical evaluation		
	3. Ability to use related work and technical reports			
		4. Ability to write literature reviews		
		4. Ability to write project documentation		
		5. Ability for oral presentation		
7.2	Specific objectives			

8. Contents

8.1. Le	ecture (syllabus)	Teaching methods	Notes
1	Introduction - Computing project types		
2	Choosing the project		
3	Preparing a project proposal	Using modern	
4	Research and research process	teaching methods	
5	Research methods	and internet acces	
6	Literature search and review		
7	The report		
8	Structuring the report		
9	Writing the report		
10	Citing and reference management		
11	Reference styles		
12	Presenting and discussions on outstanding projects		
13	Oral presentation		
14	The talk and the defense		

Bibliography

- 1. Dawson, C.W. Projects in Computing and Information Systems, Addison Wesley 2005
- 2. B. Olsson, M. Berndtsson, B. Lundell Running Research-Oriented Final Year Projects for CS and IS Students, ACM SIGSE 2003
- 3. V. Bouki Undergraduate Computer Science Projects in UK: What is the point?, Proc. of Informatics Education Europe II Conference, IEEII 2007

8.2. A	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade			
Course				Colloquium		100%			
Applications									
10.4 Minimum standard of performance									
Condition for credit achievement: N>=5									

Course responsible Conf.dr.ing.Tudor Muresan

Head of department Prof.dr.ing. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	55.

2. Data about the subject

2.1	Subject name			Com	Communication protocols and networks project						
2.2	2.2 Subject area			Comp	Computer Science and Information Technology						
2.3	Course responsible/lecturer			Asso	Assoc. Prof. dr. eng. Emil Cebuc						
2.4	2.4 Teachers in charge of applications			Sl. d	r. eng. Bogdan	Iancu, Sl. dr. en	g. Ad	lrian Peculea			
2.5	Year of study	IV	2.6	Semester	8	2.7	Assessment	Colloquium	2.8	Subject category	DID/OB

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licat	ions	Individual study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	P		S	L	P			
8	Communication protocols and networks project	-		-	2	-	-	-	28	24	52	2

3.1 Number of hours per week	2	3.2	of which, course	-	3.3	applications	2		
3.4 Total hours in the teaching plan	28	3.5	of which, course	-	3.6	applications	28		
Individual study									
Manual, lecture material and notes, bibliography									
Supplementary study in the library, online and in the field									
Preparation for seminars/laboratory works, homework, reports, portfolios, essays									
Tutoring									
Exams and tests									
Other activities									

Othe	activities	
3.7	Total hours of individual study	24
3.8	Total hours per semester	52
39	Number of credit points	2.

4. Pre-requisites (where appropriate)

4.1	Curriculum	Local Area Networks, 7-th semester
4.2	Competence	LAN protocols, LAN structure, LAN services

Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Classroom, PC with internet access

6. Specific competences

C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (1 credit)

C5.1 Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator

C5.3 Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems

C5.5 Creating a project including the problem's identification and analysis its design and development also proving

C5.5 Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

Cross competences

CT2 Identifying, describing and conducting processes in the projects management field, assuming different roles inside the team and clearly and concisely describing, verbally or in writing, in Romanian and in an international language, the results from the activity field. (1 credit)

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Teamwork, working with partial and contradicting specifications
7.2	Specific objectives	A team of 3-4 students is able to design a medium size LAN

8. Contents

0. CO	ntents						
8.1. L	ecture (syllabus)	Teaching methods	Notes				
1							
Biblio	graphy						
8.2.	Applications (Projects)	Teaching methods	Notes				
1	Introduction, team setup, project requirements and specifications	D. C.	4 hours				
2	Project design stage 1	Brief presentation	4 hours				
3	Project design stage 2	of possible solutions	4 hours				
4	Project design stage 3	Refinement of	4 hours				
5	Project documentation 1		4 hours				
6	Project documentation 2		4 hours				
7	Project presentation and colloquium	specifications	4 hours				
	Project documentation 2	project specifications	4 ł				

Bibliography

- 1. Packet Tracer user manual
- 2. OpNet user Manual
- 3. Equipment data sheet available on Internet, specific to each equipment selected by students
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Project content is kept state of the art by using latest devices available on the market

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course						
Applications		Submitted project fulfils requirements		Each project is evaluated individually		90% 10% activity during the face2face hours
10.4 Minimum	stan	dard of performance				

Course responsible Assoc. Prof. dr. eng. Emil Cebuc Head of department Prof. dr. eng. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	56.

2. Data about the subject

2.1	Subject name					Rese	Research and development activity					
2.2	Subject area					Comp	Computer Science and Information Technology					
2.3	Course respons	ible/l	ectui	er		Diplo	Diploma project supervisor					
2.4	Teachers in cha	irge o	f app	olications		As de	ecided by the si	upervisor				
2.5	5 Year of study IV 2.6 Semester 8						Assessment	Verification	2.8	Subject category	DS/OB	

3. Estimated total time

Se	em.	Subject name	Lecture	Apj	olicat	ions	Lecture	App	licat	ions	Individual study	TOTAL	Credit
			[hours / week.]		[hours / semester]								
				S	L	P		S	L	P			
	8	Research and development activity	-	-	-	8	-	-	-	112	122	234	9

3.1 Number of hours per week	Number of hours per week 8 3.2 of which, course - 3.3 applications							
3.4 Total hours in the teaching plan	112	3.5	of which, course	-	3.6	applications	112	
Individual study				•			Hours	
Manual, lecture material and notes, bibliograp	hy							
Supplementary study in the library, online and	d in the fie	eld					120	
Preparation for seminars/laboratory works, ho	mework,	reports	s, portfolios, essays					
Tutoring								
Exams and tests								
Other activities								
3.7 Total hours of individual study		122					•	

3.7	Total hours of individual study	122
3.8	Total hours per semester	234
3.9	Number of credit points	9

4. Pre-requisites (where appropriate)

	i. The requisites (where appropria	
4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

- C4 Improving the performances of the hardware, software and communication systems
- **C4.1** Identifying and describing the defining elements of the performances of the hardware, software and communication systems
- **C4.2** Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
- **C4.3** Applying the main methods and principles for increasing the performances of the hardware, software and communication
- C4.5 Developing professional solutions for hardware, software and communication systems based on perforance optimization
- C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems
- **C5.1** Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- C5.2 Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field
- C5.4 Proper utilization of the quality, safety and security standards in the field of information processing
- **C5.5** Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
- C6 Designing intelligent systems
- **C6.1** Describing the intelligent systems' components
- C6.2 Using domain-specific tools for explaining and understanding the intelligent systems' functioning
- C6.3 Applying the main methods and principles for specifying solutions for typical problems using intelligent systems

Cross

Professional competences

CT1 Honorable, responsible, ethical behavior, in the spirit of the law, in order to ensure the professional reputation CT2 Identifying, describing and conducting processes in the projects management field, assuming different roles inside the team and clearly and concisely describing, verbally or in writing, in Romanian and in an international language, the results from the activity field.

CT3 Demonstrating the spirit of initiative and action for updating professional, economical and organizational culture knowledge

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	
7.2	Specific objectives	

8. Contents

8.1. Le	ectui	re (syllabus)	Teaching methods	Notes
1				
8.2. A	ppl	ications (Projects)	Teaching methods	Notes
1	•	Establish the topic of the diploma project		
	•	Establish the main chapters of the diploma thesis		
	•	Documentation on the topic of the diploma thesis		
	•	Write a synthesis of the bibliographic study		
Biblio	grap	ohy	•	•
To be	est	ablished by the supervisor of the diploma thesis.		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course						
Applications				The examination consists of the verification of the preliminary contents of the diploma work and the verification of the synthesis of the bibliographic study.		
10.4 Minimum	stan	dard of performance				

Course responsible Diploma project supervisor

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	57.

2. Data about the subject

			- j									
2.1	Subject name					Pract	Practical placement for diploma thesis					
2.2	2.2 Subject area						Computer Science and Information Technology					
2.3	Course respons	ible/l	ectui	er		Diplo	Diploma project supervisor					
2.4	Teachers in cha	irge o	f app	olications		As de	ecided by the si	ipervisor				
2.5	.5 Year of study IV 2.6 Semester 8						Assessment	Verification	2.8	Subject category	DS/OB	

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ions	Individual study	TOTAL	Credit
		[hou	rs / week.]		[hours / semes			emes	ter]			
			S	L	P		S	L	P			
8	Practical placement for diploma thesis									60	60	2

3.1 Number of hours per week	3.2	of which, course		3.3	applications				
3.4 Total hours in the teaching plan	3.5	of which, course		3.6	applications				
01	3.3	of which, course		5.0	applications				
Individual study						Hours			
Manual, lecture material and notes, bibliograp	hy					20			
Supplementary study in the library, online and in the field									
Preparation for seminars/laboratory works, ho	mework, report	s, portfolios, essays				30			
Tutoring									
Exams and tests									
Other activities									

3.7	Total hours of individual study	60
3.8	Total hours per semester	60
3.9	Number of credit points	2

4. Pre-requisites (where appropriate)

	The requisites (where uppropriate	
4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

C4 Improving the performances of the hardware, software and communication systems (1 credit)

- **C4.1** Identifying and describing the defining elements of the performances of the hardware, software and communication systems
- **C4.3** Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems
- C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (1 credit)
- C5.2 Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field
- C5.5 Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

	N/A
Ses	
oss	
Cr	
cor	

7.1	General objective	Elaboration of the diploma thesis.
7.2	Specific objectives	To achieve these general objectives, students will integrate the research
		results in a paper to comply with the requirements of the department.

8. Contents

0. 00.			
8.1. La	ecture (syllabus)	Teaching methods	Notes
1			
Biblio	graphy		
8.2. A	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1			

Bibliography

For the diploma thesis preparation, the references are those recommended by the supervisor, as well as those obtained by studying the bibliography.

For fundamental and specific knowledge assessment, the bibliography is identical to the minimal bibliography for the each of the undergraduate courses

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Since this topic is important for the development of a quality diploma, its content aligns the research/design/development topics at the European and worldwide level. The content of the course has been discussed with key actors in this area (from both the academic and industry environment).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade			
Course									
Applications		diploma thesis		diploma thesis		100%			
10.4 Minimum standard of performance									
diploma thesis									

Course responsible Diploma project supervisor Head of department Prof.dr.ing. Rodica Potolea

Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	58.

2. Data about the subject

2.1	Subject name						Defense of Diploma Thesis							
2.2	Subject area						Computer Science and Information Technology							
2.3	Course respons	ible/l	ectui	er		Diplo	Diploma project supervisor							
2.4	Teachers in cha	rge o	f app	olications		As de	As decided by the supervisor							
2.5	Year of study	IV	2.6	Semester	8	2.7	Assessment	exam	2.8	Subject category	DS/OB			
	•													

3. Estimated total time

Sem.	Subject name	Lecture	re Applications		Lecture	Applications			Individual study	TOTAL	Credit	
		[hours / week.]			[hours / semester]							
			S	L	P		S	L	P			
8	Defense of Diploma Thesis	-	-	-	-	-	-	-	-	-	-	10

3.1 Number of hours per week	Number of hours per week 3.2 of which, course 3.3 applications					
3.4 Total hours in the teaching plan	of which, course		3.6	applications		
Individual study						Hours
Manual, lecture material and notes, bibliograp						
Supplementary study in the library, online and in the field						
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						
Tutoring						
Exams and tests						
Other activities						
3.7 Total hours of individual study						

3.7	Total hours of individual study			
3.8	Total hours per semester			
3.9	Number of credit points	10		

Pre-requisites (where appropriate)

ii Tie iee as nes (miere appropriate)					
4.1	Curriculum	Graduating all previous disciplines from the curricula			
4.2	Competence				

Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

Graduates will have the following specific skills:

- modeling and designing software and hardware sub-systems, making the best decisions regarding the costsresults trade-off concerning the design decisions
- implementing a hardware or software system
- analyzing the way a computing system meets the criteria for which it was designed and proposing improvements and future developments
- demonstrating the knowledge and understanding of important concepts, principles and theories of computer science and engineering
- identifying and analyzing specific problems and elaborating strategies for solving them
- assuring the quality of products and services in the field of information technology

using the information technology tools

	N/A
SS	
2	
ss en	
ro et	
C.	
π	
၁	

7.1	General objective	Defense of Diploma Thesis
7.2	Specific objectives	

8. Contents

8.1. Lecture (syllabus)		Teaching methods	Notes
1			
Biblio	graphy		
8.2. A	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1	• study of the bibliography in order to see how actual and necessary the project is		
	• comparative analysis of the existing products and systems		
	• comparative analysis of the potential methodologies and/or technologies		
	• preparation of the project specifications		
	• implementation and deployment of the hardware or software system		
	product testing and validation		
	• product documenting		
	• assessment of results, possible further developments, original aspects,		
	advantages and limits of solution		

Bibliography

For the diploma thesis preparation, the references are those recommended by the supervisor, as well as those obtained by studying the bibliography.

For fundamental and specific knowledge assessment, the bibliography is identical to the minimal bibliography for the each of the undergraduate courses.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course						
Applications				Separate marks - for the diploma presentation and defending (P) - for the assessment of fundamental and specific knowledge (K)		100%
10.4 Minimum, standard of performance						

10.4 Minimum standard of performance

Exam average mark: M = (P + K) / 2

Marks P and K are separate

Condition to get the credits: $P \ge 5,00$; $K \ge 5,00$; $M \ge 6,00$

Course responsible Diploma project supervisor Head of department Prof.dr.ing. Rodica Potolea