SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Data Science / Master
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name		Advance	ed Topics in Functional Programming Subject code 7.30				
2.2 Course responsible / lecturer			Assoc.prof.dr.eng. Slăvescu - Radu.Razvan.Slavescu@cs.utcluj.ro				
2.3 Teachers in charge o Laboratory / project	f semir	nars /	Assoc	Assoc.prof.dr.eng. Slăvescu <u>- Radu.Razvan.Slavescu@cs.utcluj.ro</u>			
2.4 Year of study	ı	2.5 Sem	nester	2	2.6 Type of assessment (E - exam, C - colloquium, V – verification)		E
2.7 Subject estagen	Forn	native ca	tegory:	gory: DA – advanced, DS – speciality, DC – complementary		DA	
2.7 Subject category	Optionality: DI – imposed, DO – optional (alternative), DF – optional (free choice)		DO				

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminars	-	Laboratory	-	Project	1
3.2 Number of hours per semester	42	of which:	Course	28	Seminars	-	Laboratory	-	Project	14
3.3 Individual study:										
(a) Manual, lecture material and	d note	es, bibliogra	aphy							15
(b) Supplementary study in the library, online and in the field						25				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays					11					
(d) Tutoring							5			
(e) Exams and tests						2				
(f) Other activities:										-
3.4 Total hours of individual study (su	ma (3	3.3(a)3.3(1	f)))		58					
2 F Total hours nor competer /2 2+2 /	١				100					

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	58
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	-
4.2 Competence	Basic knowledge of functional programming (functional style of writing
	functions, recursion, types, pattern matching)

5. Requirements (where appropriate)

5.1. For the course	Video projector, blackboard, screen, computer
5.2. For the applications	Computers, equipment and specific software

6. Specific competence

6.1 Professional competences	C1 – Working with advanced mathematical methods and models, engineering and computing specific techniques and technologies C3 – Innovative design of artificial intelligence and computer vision systems and related software and hardware using the specific tools
6.2 Cross competences	C1 – Proof of knowledge for the economic, ethical, legal and social context associated with the profession, for correct task identification, schedule of activities, responsible decisions, with the final goal the design, preparation and presentation of a scientific paper C3 – The student must carry out the testing process and the qualitative evaluation of both functional and non-functional characteristics of computer systems, according to specific criteria. S/he also has to be able to develop systems and applications for hardware / software / communication systems use and maintenance.

7. Expected Learning Outcomes

7. Expecte	d Learning Outcomes
	data analytics
	computer programming
Knowledge	ICT debugging tools
vlec	software components
יסר	software libraries
Ž	
	The student is able to:
	create data sets
	 design databases in the cloud
	 develop data processing applications
	establish data processes
	 implement data warehousing techniques
	manage data
	manage quantitative data
	manage research data
	 perform dimensionality reduction
	process data
	store digital data and systems
	 use data processing techniques
	• use databases
	analyse pipeline database information
	create data models
	analyse decentralised applications
	debug software
	interpret technical requirements
	 use software design patterns
Skills	use software libraries
S	adapt to changes in technological development plans
Ξ	The student has the ability to work independently in order to:
Responsibiliti es and autonomy	 develop an analytical approach
Responsib es and autonomy	take a proactive approach
Respor es and autono	 develop strategies to solve problems
Re es au	be open minded

8. Discipline objective (as results from the key competences gained)

8.1 General objective	Development of skills and abilities to apply Functional Programming principles in developing and implementing algorithms and software systems in the field of
	Data Science
8.2 Specific objectives	Gaining knowledge and skills within the context of Data Science aimed to:
	 understand and use functional concepts
	• study, design, implement and evaluate applications for Data Science in a
	functional manner

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes
Abstract Data Types	2		
Monoids. Functors. Applicatives	2		
Monads and monad transformers	2		
Arrows	2		
Strategies and Eval monad	2		
Arrays, Repa and Par monad for processing large datasets	2		
Accelerate for Graphics Processing Unit (GPU)	2		
Case study: Haskell-based functional languages for blockchain smart contracts: Plutus (Cardano, 3 rd generation blockchain platform), Daml (Digital Assets Modeling Language)	2	Interactive presentation, students involved in	
Basics of Category Theory	2	debates	
Basics of Category Theory II. Case study: Category Theory for Quantum NLP	2		
Purity of expressions in a quantum program. Case study: Twist Language (MIT new Quantum Computing language)	2		
Compositionality: JAX for high-performance numerical computing	2		
Function type: TensorFlow Federated	2		
Lazy evaluation: Lazy decomposition and conciliation. Robot motion planning	2		

Bibliography:

- 1. Bryan O'Sullivan, John Goerzen, Don Stewart. Real World Haskell. O'Reilly Media, 2008
- 2. Simon Marlow. Parallel and Concurrent Programming in Haskell. O'Reilly Media, 2013
- 3. C. Olah. Neural Networks, Types, and Functional Programming
- 4. Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries
- 5. Alexis Toumi. Category Theory for Quantum Natural Language Processing. 2022
- 6. Xi Cheng, Min Zhou, Xiaoyu Song, Ming Gu, Jiaguang Sun. Parallelizing SMT solving: Lazy decomposition and conciliation. 2018. 10.1016/j.artint.2018.01.001.
 - https://cxcfan.github.io/pub/1-s2.0-S0004370218300237-main.pdf
- 7. Generalized Lazy Search for Robot Motion Planning: Interleaving Search and Edge Evaluation via Event-based Toggles
 - https://personalrobotics.cs.washington.edu/publications/mandalika2019gls.pdf
- 8. Charles Yuan, Christopher McNally, Michael Carbin. Twist: Sound Reasoning for Purity and Entanglement in Quantum Programs. Proceedings of the ACM on Programming Languages, Vol 6, Issue POPL, article no. 30m pp 1-32. 2022

9.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Application design (goals, tools, evaluation metrics)	2	Implementation	
Application Implementation	4	using specific	
Testing. Refactoring	2	software tools, experiments and	
Performance Evaluation according to the chosen metrics	3	performance	
Writing the final report	3	evaluation.	

Bibliography:

- 1. https://docs.discopy.org/en/main/
- 2. https://www.tensorflow.org/federated/get_started
- 3. http://www.serpentine.com/criterion/
- 4. https://github.com/google/jax/blob/main/README.md
- 5. https://pytorch.org/functorch/stable/

10. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is carried out through periodic meetings with representatives of the economic environment.

11. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Exam	Written examination	50%
Seminar	-	-	-
Laboratory	-	-	-
Project	Practical abilities to solve the problems and to implement specific applications. Attendance and activity.	Project: continuous assessment (according to the milestones set)	50%

Both, Written examination and Oral examination, marks are bigger or equal with 5

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	Assoc.prof.dr.eng. Radu-Răzvan SLĂVESCU	
	Applications	Assoc.prof.dr.eng. Radu-Răzvan SLĂVESCU	

Date of approval in the department	Head of department,	
17.09.2025	Prof.dr.eng. Rodica Potolea	
Date of approval in the Faculty Council	Dean,	
19.09.2025	Prof.dr.eng. Vlad Mureșan	

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.