SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Data Science / Master
1.7 Form of education	Full time
1.8 Subject code	7.20
I	

2. Data about the subject

2.1 Subject name			Architectures of Information Systems				
2.2 Course responsible / lecturer		Prof. d	Prof. dr. eng. Dînşoreanu Mihaela - Mihaela.Dinsoreanu@cs.utcluj.ro				
2.3 Teachers in charge of seminars/ Laboratory / project As. drd. eng. Bogdan Bindea - bogdan.bindea@cs.utcluj.ro							
2.4 Year of study I 2.5 Ser		nester	2	2.6 Type of assessment (E – exam, C – colloquium, V – verification)	E		
2.7 Cubic et este es es		Formative category: DA – advanced, DS – speciality, DC – complementary			advanced, DS – speciality, DC – complementary	DA	
2.7 Subject category	Optio	onality: [OI – imp	osed	, DO – optional (alternative), DF – optional (free choice)	DO	

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminars	-	Laboratory	1	Project	-
3.2 Number of hours per semester	42	of which:	Course	28	Seminars	-	Laboratory	14	Project	-
3.3 Individual study:										
(a) Manual, lecture material ar	ıd no	tes, bibliog	raphy							20
(b) Supplementary study in the library, online and in the field									20	
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								10		
(d) Tutoring									5	
(e) Exams and tests								3		
(f) Other activities:										
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 58										
3.5 Total hours per semester (3.2+3.4) 100										

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Software Design
4.2 Competence	Design Patterns, Software architectures

4

5. Requirements (where appropriate)

5.1. For the course	Attending min 50% of the lectures to be admitted to take the final exam
5.2. For the applications	Compulsory attendance of 100% to be admitted to take the final exam

6. Specific competence

6. Specific	competence
	analyse big data
	analyse business processes
	analyse decentralised applications
	build predictive models
	create data models
	 define software architecture
	 define technical requirements
	 design cloud architecture
	 develop software prototype
	 develop with cloud services
	 interpret technical requirements
	 manage cloud data and storage
Professional competences	 oversee development of software
ten	 perform data cleansing
ibei	perform data mining
com	 perform scientific research
al c	 provide technical documentation
ion	 use data processing techniques
ess	 use software design patterns
rof	use software libraries
6.1 P	 utilise computer-aided software engineering tools
9	utilise machine learning
	The graduate:
ces	develops an analytical approach
ss ten	takes a proactive approach
Cross	develops strategies to solve problems
6.2 Cross competences	• is open minded
) 9	 coordinates engineering teams

7. Expected Learning Outcomes

	The student has knowledge of:
	cloud technologies
	computer science
	data analytics
	data models
	data storage
	data warehouse
ge	database management systems (DBMS)
Knowledge	digital data processing
ا ەر	unstructured data
호	

	The student is able to:
	create data sets
	 design databases in the cloud
	 develop data processing applications
	establish data processes
	 implement data warehousing techniques
	manage ICT data architecture
	manage data
	manage quantitative data
	manage research data
	 perform dimensionality reduction
	process data
	store digital data and systems
	use data processing techniques
10	use databases
Skills	analyse pipeline database information
S	create data models
	The student has the ability to work independently in order to:
ies >	develop an analytical approach
) ilit	take a proactive approach
nsik	develop strategies to solve problems
Responsibilities and autonomy	be open-minded
Res	coordinate engineering teams

8. Discipline objective (as results from the key competences gained)

8.1 General objective	The main objective of this discipline is to provide specific information and to prepare students for designing and building solutions based on cloud native
	data, machine learning platforms and multicloud tools.
8.2 Specific objectives	To achieve these general objectives, students will learn how to:
	 Design modern and secure cloud native or hybrid data analytics and machine learning platform
	 Consolidate enterprise data in a governed, scalable, and resilient data platform
	 Democratize access to enterprise data and govern how business teams extract insights and build AI/ML capabilities
	 Use streaming pipelines to enable decisions making in real time
	 Build an MLOps platform to move to a predictive and prescriptive analytics approach

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes
Introduction to Data Lifecycle	2		
Designing Data architectures – Principles, Concepts, Technologies	2		
Cloud Architectures – Apache Spark	2		
Architecting Data Lakes	2		
Enterprise Data Warehouse	2		
Converging to Lakehouse	2	Oral presentation,	
Architecting for streaming – Streaming Ingest	2	ppt support, discussions	
Stream analytics	2	4 413643310113	
Multicloud and edge computing	2		
ML application architectures	2		
ML platform architectures	2		
MLOps	2		

Final review	2
Project Presentations	2

Bibliography:

- 1. Marco Tranquillin, Valliappa Lakshmanan, Firat Tekiner, Architecting Data and Machine Learning Platforms, 2023, ISBN: 9781098151614
- 2. David Ping, The Machine Learning Solutions Architect Handbook: Create machine learning platforms to run solutions in an enterprise setting, 2022, ISBN: 978-1801072168
- 3. Joe Reis, Matt Housley, Fundamentals of Data Engineering: Plan and Build Robust Data Systems, 2022, ISBN: 9781098108304

9.2 Applications - Seminars / Laboratory / Project	Hours	Teaching methods	Notes
Data environment setup	1		
Data modelling	1		
Cloud Apache Spark	1		
Data lakes	1		
Data warehouse	1		
Lakehouse	1] .	
Streaming environment setup	1	Oral presentations,	
Stream analytics	1	hands-on lab, discussions	
Multicloud and edge computing	1	4.50455.01.5	
ML application architecture	1		
ML platform architecture	1		
Final review and discussions	1		
Final review	1		
Project presentations	1		

Bibliography:

- 1. Marco Tranquillin, Valliappa Lakshmanan, Firat Tekiner, Architecting Data and Machine Learning Platforms, 2023, ISBN: 9781098151614
- 2. David Ping, The Machine Learning Solutions Architect Handbook: Create machine learning platforms to run solutions in an enterprise setting, 2022, ISBN: 978-1801072168
- 3. Joe Reis, Matt Housley, Fundamentals of Data Engineering: Plan and Build Robust Data Systems, 2022, ISBN: 9781098108304

10. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

11. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	The ability to solve domain specific problems Attendance, (inter)activity during class hours	Exam - summative, interaction - continuous	50%
Seminar	-	-	-
Laboratory	Lab tasks completion Attendance	Lab assignments - continuous	50%
Project	-	-	-
Minimum standa	rd of performance: Lab grade >=5, Exam grade	>=5	

Date of filling in:	Responsible	Title First name Last name	Signature	
---------------------	-------------	----------------------------	-----------	--

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

01.09.2025	Course	Prof.dr.eng. Mihaela DÎNŞOREANU	
	Applications	As.drd.ing. Bogdan Bindea	

Date of approval in the department 17.09.2025	Head of department, Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean,
19.09.2025	Prof.dr.eng. Vlad Muresan