SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master of Science
1.6 Program of study/Qualification	Data Science / Master
1.7 Form of education	Full time
1.8 Subject code	20.00

2. Data about the subject

2.1 Subject name				Research Practice			
2.2 Subject area				Artificial Intelligence			
2.2 Course responsible,	lectu	rer	Not necessary.				
2.3 Lecturers/ Teachers in charge with		Not necessary.					
seminars/ labs./ projects		The necessary.					
2.4 Year of study	П	5Semester	4	2.6 Assessment E–exam, C–colloq., V-verif.			
2.7 Subject category Formative category: DD-			y: DD	– d eepening, SD– s ynthes	is, CD– c omplementary	SD	
2.7 Subject category		Optionality: MD-mandatory, ED-elective, OD-optional				MD	

3. Estimated total time

3.1 Number of hours per week	14	of which	Course	1	Seminar	1	Laborator	-	Proiect	14
3.2 Total hours in the curriculum	196	of which	Course	1	Seminar	1	Laborator	-	Proiect	196
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography										
(b) Supplementary study in the library, online and in the field							25			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								25		
(d) Tutoring										
(e) Exams and tests									4	
(f) Other activities								-		
3.4 Total hours of individual study (summ (3.7(a)3.7(f))) 54										
3.5 Total hours per semester (3.4+3.8) 250										

3.4 Total Hours of marviadal study (3dmm (3.7(a)3.7(1)))	54
3.5 Total hours per semester (3.4+3.8)	250
3.6 Number of credit points	10

4. Pre-requisites (where appropriate)

4.1 Curriculum	Research Activity 1,2 and 3
4.2 Competence	Related to the disciplines above

5. Requirements (where appropriate)

5.1 For the course	It's not necessary
5.2 For the seminar / laboratory / project	Computers, equipment and specific software

6. Specific competences

6.1 Professional competences	C5 - The creative combination of multidisciplinary knowledge in the field of			
	computer science and information technology in order to research, specify,			
	design, optimize, implement, test and evaluate original theories, algorithms,			
	techniques, methods and methodologies specific to complex artificial			
	intelligence and vision systems.			
	C5.1 - Demonstrated knowledge of artificial intelligence and vision			
	systems research, design, implementation, optimization and testing methodologies			
	C5.2 - Demonstrating the ability to analyze and interpret new			
	situations through the prism of fundamental knowledge in the field			
	of computers and information technology			
	C5.3 - The creative combination, based on the discovery of new			
	semantic and functional links, of various modern design principles in			
	the field of computers and information technology to solve			
	optimization problems			
	C5.4 - Basing the research activity and innovative design in the field			
	of computers on correct evaluation criteria			
	C5.5 - Carrying out research activities with practical purpose			
	demonstrated through functional software and / or hardware			
	prototypes			
6.2 Cross competences	CT1 - Demonstrating knowledge of the economic, ethical, legal and social			
0.2 cross competences	context of exercising the profession for identifying tasks, planning activities			
	and opting for responsible decisions, culminating in the conception, drafting			
	and presentation of a scientific paper			
	CT2 - The clear and concise description of the flow of activities, tasks and			
	results in the field of activity, obtained either after assuming the role of			
	leader / project manager, or as a member of a research team, thanks to: the			
	ability to synthesize information from the field, the overall global vision,			
	communication skills with collaborators, the ability to define activities by			
	stages			
	CT3 - Practicing the continuous self-education and demonstrating critical,			
	innovative and research skills			

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	Development of research and design skills and competencies in the field of
7.1 General objective	intelligence and artificial vision, computers and information technology
7.2 Specific objectives	Assimilation of knowledge and skills regarding:
7.2 Specific objectives	integration of the components of the completed application system
	testing and validating the completed application
	development of product documentation
	development of the user manual
	elaboration of a scientific presentation

8. Contents

8.1. Lecture (syllabus)	Hours	Teaching methods	Notes
-			
Bibliography: Not necessary			

8.2 Applications - Seminars / Laboratory / Project	Hours	Teaching methods	Notes
Realization of at least one validation of the obtained results			
Elaboration of conclusions resulting from a research activity		Individual work and	
Evidence of personal contributions obtained as a result of a research activity;		periodic checks.	
Evidencing the possibilities of continuing research through a doctorate			
Documentation on the dissertation topic;			
Creation of a report summarizing the activities carried out.			
Bibliography: Establishd by each advisor in accordance with the research topics			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is carried out through periodic meetings with representatives of the economic environment

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	Not necessary				
Applications (Seminars	Based on the practical results	Oral examination,	60%		
/Laboratory / Project)	and the elaborated report	Report evaluation	40%		
Minimum standard of performance: Average 5					

Responsible	Title First name Last name	Signature
Course	-	
Applications	-	
	Course	Course -

Date of approval in the department	Head of department,
17.09.2025	Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean,
19.09.2025	Prof.dr.eng. Vlad Mureşan