SYLLABUS

1. Data about the program of study

2. Data about the program of staay	
1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master of Science
1.6 Program of study / Qualification	Computer science / Master
1.7 Form of education	Full time
1.8 Subject code	2.00

2. Data about the subject

2.1 Subject name			Algori	Algorithms				
2.2 Course responsible / lecturer		Prof.d	Prof.dr.eng. Potolea Rodica - Rodica.Potolea@cs.utcluj.ro					
2.3 Teacher in charge of solutions laboratory / project	emina	irs /	Assoc.	Assoc.prof.dr.eng. Oprișa Ciprian - Ciprian.Oprisa@cs.utcluj.ro				
2.4 Year of study	_	2.5 Sen	nester	ester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E		
2.7 Subject category	Forn	native ca	ategory: DA – advanced, DS – speciality, DC – complementary			DS		
2.7 Subject category	Opti	onality:	DI – imposed, DO – optional (alternative), DF – optional (free choice)			DI		

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	1	Seminars	-	Laboratory	1	Project	1
3.2 Number of hours per semester	42	of which:	Course	14	Seminars	-	Laboratory	14	Project	14
3.3 Individual study:										
(a) Manual, lecture material a	nd no	otes, biblio	graphy							20
(b) Supplementary study in the library, online and in the field						9				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							20			
(d) Tutoring							4			
(e) Exams and tests							5			
(f) Other activities:						0				
									· ·	

3.4 Total hours of individual study (sum (3.3(a)3.3(f)))	58
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Data Structures, Programming Techniques, Algorithms
4.2 Competence	Algorithms performance evaluation, Knowledge of fundamental algorithms on basic data structures

5. Requirements (where appropriate)

5.1. For the course	Blackboard, projector, computer
5.2. For the project	Computers

6. Specific competence

6.1 Professional competences	C1 - Working with advanced mathematical methods and models, engineering and
	computing specific techniques and technologies.
	 C1.1 – Knowledge and proof of concepts and principles, both theoretical and practical from the software domain.
	 C1.2 – Applying specific theory and instruments (algorithms, diagrams, models and tools) for explaining the structure and operation mode of the recent technologies in software, programming environments and programming systems from the scientific literature.
	 C1.3 – Using specific models and methods for identifying software components and solutions that are viable for incomplete specifications.
	C2 - Development of advanced techniques, methods and methodologies in the
	domains of software design, programming systems and environments and their applications.
	 C2.1 – Identifying and describing the structure and operation mode for complex software systems and applications based on them.
	 C2.2 – Building original software components for advanced programming systems, using algorithms, techniques, data structures, technologies and complex programming environments described in the scientific literature.
	 C3.3 – Using criteria, techniques and metrics for evaluating and selecting software systems building methodologies, functional and non- functional characteristics.
6.2 Cross competences	CT3 - Exercising the skill of continuous self-education and demonstrating critical, innovative and research abilities.

7. Discipline objective

7.1 General objective	Acquiring problem-solving skills specific to data analysis tasks, identifying potential solutions and selecting appropriate ones.	
7.2 Specific objectives	 Complexity computation Distinguishing between complexity classes Approximating computationally hard problems Knowledge of algorithms specific to big data 	

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Algorithms complexity	2	Discussion and	
Complexity classes; P vs. NP, NP-Completeness	2	multimedia materials	
NP-complete problems; reduction algorithms	2	Interractive teaching style Involving students in	N/A
NP-complete problems approximation	2	presenting some case studies	N/A
Sublinear algorithms for big data	2	Problems solving	
Linear programming	2	1	
Searching in big data	2		

Bibliography

- 1. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to algorithms*. MIT press, 2022.
- 2. Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. *Mining of massive data sets*. Cambridge university press, 2020.
- 3. Feldman, Moran. Algorithms for Big Data. World Scientific, 2020.

8.2 Applications – seminars / laboratory / project	Hours	Teaching methods	Notes
Experimental analysis of the algorithms complexity	2	Discussion and multimedia	
Identifying the algorithms complexity classes	2	materials.	N/A
Reduction algorithms for NP-Complete problems	2	Study of relvant research	
Approximation algorithms for NP-Complete problems	2	papers.	

Implementation of sublinear algorithms	2	
Implementation and analysis of linear programming techniques	2	Applying the studied
Algorithms for searching in big data	2	techniques.
Introduction and presentation of the project theme	2	
Bibliographic research: resources identification	2	
Bibliographic research: documentation analysis and synthesis	2	
Requirements gathering	2	
Implementing and testing a case study	2	
Analysis of the experimental results	2	
Redacting and presenting the final document	2	

Bibliography:

- 1. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to algorithms*. MIT press, 2022.
- 2. Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. *Mining of massive data sets*. Cambridge university press, 2020.
- 3. Feldman, Moran. Algorithms for Big Data. World Scientific, 2020.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Theoretical analysis and problem solving skills based on the acquired knowledge	Written exam	50%
Laboratory	Based on the obtained results and the analysis and synthesis skills	Practical problem-solving skills	20%
Project	Based on the obtained results and the analysis and synthesis skills	Oral evaluation	30%

Minimum standard of performance:

- Laboratory ≥ 5
- Project evaluation ≥ 5
- Final exam ≥ 5;

Final grade computation: 50% final exam + 20% laboratory + 30% project

Date of filling in: 26.02.2025	Responsible	Title, First name Last name	Signature
	Course	Prof.dr.eng. Rodica POTOLEA	
	Applications	Assoc.prof.dr.eng. Ciprian OPRIŞA	

Date of approval in the department 17.09.2025	Head of department, Prof.dr.eng. Rodica Potolea	
Date of approval in the Faculty Council 17.09.2025	Dean, Prof.dr.eng. Vlad Mureşan	