SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Data Science / Master
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name			Research Activity 3			Subject code	19.00	
2.2 Course responsible / lecturer				Not necessary.				
2.3 Teachers in charge of seminars / Not necessary. Laboratory / project								
2.4 Year of study	П	2.5 Sem	Semester 3 2.6 Type of assessment (E - exam, C - colloquium, V – verification)			- v		
2.7 Subject estagen	Forn	Formative category: DA – advanced, DS – speciality, DC – complementary				DS		
2.7 Subject category	Opti	onality: I	DI – imp	osed	, DO – optional (alternative)	, DF – optional (free choic	e) DI	

3. Estimated total time

3.1 Number of hours per week	14	of which:	Course	-	Seminars	-	Laboratory	-	Project	14
3.2 Number of hours per semester	196	of which:	Course	1	Seminars	-	Laboratory	-	Project	196
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography								-		
(b) Supplementary study in the library, online and in the field							25			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							-			
(d) Tutoring								-		
(e) Exams and tests							4			
(f) Other activities:						-				
3.4 Total hours of individual study (su	ıma (3	3.3(a)3.3(1	f)))		29					
3.5 Total hours per semester (3.2+3.4)										

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Research Activity 1 and 2
4.2 Competence	Related to the discipline above

5. Requirements (where appropriate)

5.1. For the course	It's not necessary
5.2. For the applications	Computers, equipment and specific software

6. Specific competence

6. Specific competence 6.1 Professional competences	C2 Specification analysis modeling design verification testing validation and
6.1 Professional competences	C3 - Specification, analysis, modeling, design, verification, testing, validation, and
	maintenance of advanced artificial intelligence and vision systems and software
	components, using field-specific tools
	C3.1 - Demonstrating knowledge of the domain, programming
	environments, and concepts of artificial intelligence and vision systems
	C3.2 - Analysis of the interactions and mode of operation of the
	components of complex artificial vision systems proposed in the scientific literature
	C3.3 - Analysis, modeling and innovative design of artificial intelligence
	and vision systems, of related hardware and software components
	C3.4 - Comparative, synthetic, including experimental evaluation of
	solution alternatives for performance optimization, based on usability criteria
	C3.5 - Developing and implementing original solutions for domain-
	specific problems, starting from a set of informally specified
	requirements
	C4 - Contextual integration and integrity of complex artificial intelligence and
	vision systems
	C4.1 - Demonstration of knowledge and understanding of
	interoperability and integration elements specific to artificial
	intelligence and vision systems, taken both as a whole and on modules
	C4.2 - Using interdisciplinary knowledge to adapt complex intelligence
	and artificial vision systems in relation to the dynamic requirements of the application field
	C4.3 - The combined use of classic and original principles and methods
	for the integration of the components of artificial intelligence and vision systems
	C4.4 - The use of quality, safety and security standards in information
	processing and in the integration of complex intelligence and artificial
	vision systems
	C4.5 - Realization of interdisciplinary projects, including problem
	identification and analysis, elaboration of specifications, software
	design, implementation of functional testing and evaluation of specific
	quality, security and performance criteria, as well as validation of the
	integrated artificial intelligence and vision system
6.2 Cross competences	N/A

7. Expected Learning Outcomes

Knowledge

••	to tearning outcomes
	The student has knowledge of:
	cloud technologies
	computer science
	data warehouse
	• statistics
	blockchain application security principles
	blockchain architecture
	blockchain-based business models

Skills	The student is able to:
Responsibilitie s and autonomy	The student has the ability to work independently in order to: • develop an analytical approach • take a proactive approach • develop strategies to solve problems • be open minded

8. Discipline objective (as results from the key competences gained)

8.1 General objective	Development of research and design skills and competencies in the field of			
	intelligence and artificial vision, computers and information technology			
8.2 Specific objectives	Assimilation of knowledge and skills regarding:			
	detailed design of the components of the application system			
	implementation of application system components			
	elaboration of the design and implementation documentation			
	elaboration of a scientific paper			

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes	
Not necessary				
Bibliography: Not necessary				
9.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes	
Realization of a theoretical, experimental, numerical model;		Individual work and 10 credits		
Carrying out a preliminary study				
Documentation on the dissertation topic;		periodic checks		
Creation of a report summarizing the activities carried out.				
Bibliography: Establishd by each advisor in accordance with the research topics				

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

10. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is carried out through periodic meetings with representatives of the economic environment.

11. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Not necessary		
Seminar			
Laboratory			
Project	Based on the practical results and the	Oral examination,	60%
	elaborated report	Report evaluation	40%
Minimum standard of p	performance: Average 5		

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	-	
	Applications	-	

Date of approval in the department 17.09.2025	Head of department, Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean,
19.09.2025	Prof.dr.eng. Vlad Mureşan