SYLLABUS # 1. Data about the program of study | 1.1 Institution | The Technical University of Cluj-Napoca | |--------------------------------------|---| | 1.2 Faculty | Faculty of Automation and Computer Science | | 1.3 Department | Computer Science | | 1.4 Field of study | Computer Science and Information Technology | | 1.5 Cycle of study | Master of Science | | 1.6 Program of study / Qualification | Data Science / Master | | 1.7 Form of education | Full time | | 1.8 Subject code | 17.20 | ## 2. Data about the subject | 2.1 Subject name | | | Inform | nation | n Security | | |--|-------|--|---|----------------------------------|-------------------------|-----| | 2.2 Course responsible / le | cture | r | Assoc. prof. dr. eng. Adrian Coleşa - Adrian.Colesa@cs.utcluj.ro Assoc. prof. dr. eng. Ciprian Oprişa - Ciprian.Oprisa@cs.utcluj.ro | | | | | 2.3 Teacher in charge of se laboratory / project | mina | rs / | Assoc. prof. dr. eng. Adrian Coleşa - Adrian.Colesa@cs.utcluj.ro Assoc. prof. dr. eng. Ciprian Oprişa - Ciprian.Oprisa@cs.utcluj.ro | | | | | 2.4 Year of study | II | 2.5 Sem | ester 3 2.6 Type of assessment (E - exam, C - colloquium, V - verification) | | Е | | | DA – de apro | | fundare | , DS - | - de sinteza, DC – complementară | DC | | | 2.7 Subject category | DI – | DI – Impusă, DOp – opțională, DFac – facultativă | | | ală, DFac – facultativă | DOp | ## 3. Estimated total time | 3.1 Number of hours per week | 1 | of which: | Course | 1 | Seminars | - | Laboratory | - | Project | 1 | |--|--------|-------------|--------|----|----------|----|------------|---|---------|----| | 3.2 Number of hours per semester | 28 | of which: | Course | 14 | Seminars | - | Laboratory | - | Project | 14 | | 3.3 Individual study: | | 1 | • | | | | | | | | | (a) Manual, lecture material a | and no | tes, biblio | graphy | | | | | | | 25 | | (b) Supplementary study in the library, online and in the field | | | | | | 13 | | | | | | (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays | | | | | | 25 | | | | | | (d) Tutoring | | | | | | | 4 | | | | | (e) Exams and tests | | | | | | | 5 | | | | | (f) Other activities: | | | | | | 0 | | | | | | 3.4 Total hours of individual study (| sum (| 3 3(a) 3 3 | (f))) | | 72 | | | | | | | 3.4 Total hours of individual study (sum (3.3(a)3.3(f))) | 72 | |--|-----| | 3.5 Total hours per semester (3.2+3.4) | 100 | | 3.6 Number of credit points | 4 | # 4. Pre-requisites (where appropriate) | 4.1 Curriculum | N/A | |----------------|--| | 4.2 Competence | Basic knowledge of operating systems and computer networks | # 5. Requirements (where appropriate) | 5.1. For the course | Blackboard, projector, computer | |----------------------|---| | 5.2. For the project | Specific equipment and software for the project topic | #### 6. Specific competence | 6.1 Professional competences | C1 - Working with advanced mathematical methods and models, engineering and computing specific techniques and technologies. | |------------------------------|--| | | C1.1 – Knowledge of the main cybersecurity risks and threats, focusing
on those applicable to data security. | | | C1.2 – Modeling new security risks and assessing their impact on
companies and private persons data. | | | C1.3 – Data encryption and anonymization according to good practice
principles and current legislation. | | | C4 - Contextual integration and exploitation of dedicated information systems. | | | • C4.1 – Applying security techniques for data transimission and storage. | | | C4.2 – Propsing security solutions and intrusion detection methods
based on data analysis. | | 6.2 Cross competences | CT3 - Exercising the skill of continuous self-education and demonstrating critical, innovative and research abilities. | #### 7. Discipline objective | 7.1 General objective | Getting familiar with security concepts specific to data science and acquiring a vision and skill set where security is a key element in data analysis and manipultation. | |-------------------------|--| | 7.2 Specific objectives | Knowledge of the common cybersecurity attacks and the techniques to defend from them. Getting familiar with basic cryptography concepts, both theoretically and applied on existing communication protocols. Approaching data processing problems by considering the privacy issues and protecting personal identifiable information. Approaching security problems with a data-oriented perspective. | #### 8. Contents | | | | 1 | |---|-------|---|-------| | 8.1 Lectures | Hours | Teaching methods | Notes | | Basic cybersecurity concepts and discussing the main attack types | 2 | | | | Cybersecurity elements | 2 | Discussion and | N/A | | Secure communication protocols | 2 | multimedia materials
Interractive teaching style | | | Privacy enforcement and GDPR | 2 | Involving students in | | | Data anonymization techniques | 2 | presenting some case | | | Security threats detection through data analysis | 2 | studies.Problems solving | | | Recap | 2 | | | ## Bibliography: - 1. Whitman, Michael E., and Herbert J. Mattord. *Principles of information security*. Cengage learning, 2021. - 2. Jarmul, Katharine. *Practical Data Privacy*. O'Reilly, 2023 - 3. Sikos, Leslie F., and Kim-Kwang Raymond Choo, eds. *Data science in cybersecurity and cyberthreat intelligence*. Cham: Springer, 2020. | 8.2 Applications (seminars/laboratory/project)* | Hours | Teaching methods | Notes | |--|-------|---------------------------------------|-------| | Introduction | 2 | | | | Bibliographic research: resources identification | 2 | Discussion and | N/A | | Bibliographic research: documentation analysis and synthesis | 2 | multimedia materials Study of relvant | | | Requirements gathering | 2 | research papers | | | Implementing and testing a case study | 2 | Applying the studied | | | Analysis of the experimental results | 2 | techniques | | | Redacting and presenting the final document | 2 | | | #### Bibliography: - 1. Whitman, Michael E., and Herbert J. Mattord. Principles of information security. Cengage learning, 2021. - 2. Jarmul, Katharine. Practical Data Privacy. O'Reilly, 2023 - 3. Sikos, Leslie F., and Kim-Kwang Raymond Choo, eds. *Data science in cybersecurity and cyberthreat intelligence*. Cham: Springer, 2020. - 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field #### 10. Evaluation | Activity type | Assessment criteria | Assessment methods | Weight in the final grade | |---------------|---|--------------------|---------------------------| | Course | Theoretical analysis and problem solving skills based on the acquired knowledge | Written exam | 60% | | Project | Based on the obtained results and the analysis and synthesis skills | Oral evaluation | 40% | ## Minimum standard of performance: - Proving the grasp on information security concepts - The skill to study and synthesize a relevant research paper. - Final grade computation: 40% project + 60% final exam - Pass criteria: Final exam ≥ 5; Project evaluation ≥ 5 | Date of filling in:
26.02.2026 | Responsible | Title First name Last name | Signature | |-----------------------------------|--------------|--------------------------------------|-----------| | | Course | Assoc. prof. dr. eng. Ciprian OPRIŞA | | | | | Assoc. prof. dr. eng. Adrian COLEŞA | | | | Applications | Assoc. prof. dr. eng. Ciprian OPRIŞA | | | | | Assoc. prof. dr. eng. Adrian COLEŞA | | | Date of approval in the department 17.09.2025 | Head of department,
Prof.dr.eng. Rodica Potolea | |---|--| | Date of approval in the Faculty Council | Dean, | | 19.09.2025 | Prof.dr.eng. Vlad Mureșan |