SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Data Science / Master
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name		Adva	Advanced in Computer Vision Subject code 16.20				
2.2 Course responsible / lecturer		Sl. dr. eng. Petrovai Andra - Andra.PETROVAI@cs.utcluj.ro					
2.3 Teachers in charge o Laboratory / project	f semir	nars /	Sl. dr. eng. Petrovai Andra - Andra.PETROVAI@cs.utcluj.ro				
2.4 Year of study	П	2.5 Sem	nester	er 1 2.6 Type of assessment (E - exam, C - colloquium, V – verification)			Е
2.7 Subject estages	Forn	Formative category: DA – advanced, DS – speciality, DC – complementary				SD	
2.7 Subject category Optionality: I			OI – imp	osed	, DO – optional (alternative),	, DF – optional (free choice)	OD

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminars	1	Laboratory	-	Project	-
3.2 Number of hours per semester	42	of which:	Course	28	Seminars	14	Laboratory	-	Project	1
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography								23		
(b) Supplementary study in the library, online and in the field								23		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								10		
(d) Tutoring								ı		
(e) Exams and tests									2	
(f) Other activities:								-		
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 58										
3.5 Total hours per semester (3.2+3.4)										
3.6 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Image processing and computer vision
4.2 Competence	Operation with mathematical methods and models, techniques and
	technologies specific to the field of image processing

5. Requirements (where appropriate)

5.1. For the course	Blackboard, video projector, screen, computer
5.2. For the applications	Computers, equipment and specific software

6. Specific competence

or opening competence	
6.1 Professional competences	C1 - Working with advanced mathematical methods and models, engineering and computing specific techniques and technologies C3 - Innovative design of artificial intelligence and computer vision systems and related software and hardware using the specific tools. C5 - Creative pooling of multidisciplinary knowledge in the field of computers and information technology for research, design, optimization, implementation and testing of theories, algorithms and original methods specific to artificial intelligence and computer vision systems.
6.2 Cross competences	N/A

7. Expected Learning Outcomes

7. Expecte	d Learning Outcomes
	The student has knowledge of:
	computer science
	cloud technologies
a)	software components
dge	ICT debugging tools
νle	
Knowledge	
\sim	
	The student is able to:
	manage research data
	manage ICT data architecture
	process data
	use software design patterns
10	
Skills	
S	
se >	The student has the ability to work independently in order to:
litic	develop an analytical approach
Responsibilities and autonomy	take a proactive approach
aut	develop strategies to solve problems
Resp and a	be open minded
a B	coordinate engineering teams

8. Discipline objective (as results from the key competences gained)

8.1 General objective	The development of skills and abilities for the development of artificial vision systems in the field of intelligence and artificial vision, computers and information technology
8.2 Specific objectives	Assimilation of knowledge and skills regarding: - understanding and using artificial vision concepts, paradigms and models - the nuanced understanding and use of artificial vision algorithms - studying, designing, implementing and evaluating artificial vision application modules - image processing and pattern recognition methods

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes
Introduction	2	Systematic exposure,	
Image Classification	2	student involvement	
Neural Networks and Backpropagation	2	stadent involvement	

Convolutional Neural Networks	2	in presentations and
Training Neural Networks	2	debates.
Convolutional Neural Networks Architecture	2	
Detection and Segmentation	2	
Introduction in Projective Geometry	2	
Stereo Vision	2	
Structure from motion and epipolar geometry	2	
Multiple View Geometry	2	
Similarity Measures and Point-feature Extraction	2	
Optical Flow	2	
Detection and Segmentation in the 3D Space	2	

Bibliography:

Convolutional Neural Networks for Visual Recognition, http://cs231n.stanford.edu/

- 2. David Forsyth, Jean Ponce "Computer Vision A Modern Approach", Prentice Hall, USA, 2002
- 3. IEEE Transactions on Pattern Analyses and Machine Intelligence
- 4. IEEE Transactions on Image Processing
- 5. IEEE Transactions on Intelligent Transportation Systems
- 6. CVPR, ECCV and ICCV papers

9.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Machine Learning Topics-1	2		
Machine Learning Topics-2	2		
Deep Learning Based Computer Vision	2		
Detection, classification, semantic segmentation from images and image sequences	2		
Stereovision and depth from monocular images	2		
Optical flow, motion flow	2		
Detection, classification, semantic segmentation of 3D Point Clouds	2		

Bibliography:

Convolutional Neural Networks for Visual Recognition, http://cs231n.stanford.edu/

- 2. David Forsyth, Jean Ponce "Computer Vision A Modern Approach", Prentice Hall, USA, 2002
- 3. IEEE Transactions on Pattern Analyses and Machine Intelligence
- 4. IEEE Transactions on Image Processing
- 5. IEEE Transactions on Intelligent Transportation Systems
- 6. CVPR, ECCV and ICCV papers

10. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is carried out through periodic meetings with representatives of the economic environment.

11. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Exam	Written examination	50%
Seminar	Individual presentation of a subject in the field	Oral examination	50%
Laboratory	-	-	-
Project	-	-	-

Minimum standard of performance:

Both, Written examination and Oral examination, marks are bigger or equal with 5

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	Sl. dr. eng. Andra PETROVAI	
	Applications	Sl. dr. eng. Andra PETROVAI	

Date of approval in the department 17.09.2025	Head of department, Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean,
19.09.2025	Prof.dr.eng. Vlad Mureşan