SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Data Science / Master
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name Internet of To				ings	and Industry 4,0	Subject code	15.10	
2.2 Course responsible / lecturer				Lect.dr.eng. Raluca-Laura PORTASE - raluca.portase@cs.utcluj.ro				
2.3 Teachers in charge of seminars / Lect.dr.eng. Raluca-Laura PORTASE - raluca.portase@cs.utcluj.ro Laboratory / project								
2.4 Year of study	П	II 2.5 Semester			2.6 Type of assessment (E - exam, C - colloquium, V – verification)			E
Formative ca			tegory:	DA -	- advanced, DS – speciality, [C – complementar	У	DA
2.7 Subject category	Opti	onality: I	OI – imp	osed	, DO – optional (alternative),	DF – optional (free	e choice)	DO

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	1	Seminars	1	Laboratory	1	Project	-
3.2 Number of hours per semester	42	of which:	Course	14	Seminars	14	Laboratory	14	Project	-
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography									20	
(b) Supplementary study in the library, online and in the field								10		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								20		
(d) Tutoring								5		
(e) Exams and tests								3		
(f) Other activities:										
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 58										
3.5 Total hours per semester (3.2+3.4)										

4. Pre-requisites (where appropriate)

3.6 Number of credit points

c requisites (ere appropriate	·1
4.1 Curriculum	Big Data, Machine Learning. Distributed systems - bachelor. Design with
	microprocessors - bachelor
4.2 Competence	Operating with fundamental computer science concepts

5. Requirements (where appropriate)

5.1. For the course	Blackboard, Projector, PC
	MS Teams Platform
5.2. For the applications	PC, Specific Software

6. Specific competence

6.1 Professional competences	analyse big data				
	analyse decentralised applications				
	build predictive models				
	create data models				
	debug software				
	define software architecture				
	define technical requirements				
	develop software prototype				
	develop with cloud services				
	implement smart contracts				
	interpret technical requirements				
	perform data cleansing				
	perform data mining				
	use data processing techniques				
	use software design patterns				
	use software libraries				
	utilise computer-aided software engineering tools				
	utilise machine learning				
6.2 Cross competences	The graduate:				
	develop an analytical approach				
	taking a proactive approach				
	 developing strategies to solve problems 				
	being open minded				

7. Expected Learning Outcomes

	The student has knowledge of:
	cloud technologies
	computer science
	data analytics
	data models
	data storage
	data warehouse
	digital data processing
	computer programming
	smart contracts
	unstructured data
dge	software components
<u>ĕ</u>	software libraries
Knowledge	cloud technologies
$\overline{\Delta}$	data analytics

	The student is able to:				
	create data sets				
	design databases in the cloud				
	develop data processing applications				
	establish data processes				
	manage quantitative data				
	manage research data				
	perform dimensionality reduction				
	process data				
	use data processing techniques				
	use databases				
	analyse pipeline database information				
	create data models				
	debug software				
	use software design patterns				
Skills	use software libraries				
S	adapt to changes in technological development plans				
	The student has the ability to work independently in order to:				
ibili √	develop an analytical approach				
esponsibiliti s and utonomy	take a proactive approach				
	develop strategies to solve problems				
Re es au	be open minded				

8. Discipline objective (as results from the key competences gained)

8.1 General objective	Facilitate the understanding of main characteristic of IoT system and the
•	Internet 4.0 context. Knowledge of the algorithms, protocols and best practices.
	Design, implement, evaluate and integrate an IoT system
8.2 Specific objectives	In order to achieve this objective, students will learn to:
	understanding of IoT protocols
	process data from IoT enviroment
	 apply statistical methods and machine learning techniques for analysing IoT data
	determine and optimize parameters
	 design systems for IoT with an increased security

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes
IoT introduction notions. Distributed world	1		
IoT Architecture. Web of things	1	_	
Wired and wireless technologies for the IoT	1	_	
Industrial Protocols and Standards for Internet of Things	2	Lectures using	
Intro to industrial protocols. Intro to smart cities	1	blackboard and	
Data in IoT networks	1	projector; involving	
Cloud & Edge Computing for IoT	2	students in debate	
Cybersecurity in IoT & Industry 4.0	2		
Machine learning models applied to IoT	2		
Predictive maintenance models	1		

Bibliography:

- Hands-On Industrial Internet of Things. 2nd edition. Giacomo Veneri, Antonio Capasso, Packt Publishing Limited, 2024
- Internet of Things and Data Analytics Handbook. Hwaiyu Geng. Wiley, 2017
- Internet of Things: Architectures, Protocols and Standards. Simone Cirani, Gianluigi Ferrari, Marco Picone, Luca Veltri Wiley. 2018.
- Artificial Intelligence for IoT Cookbook: Over 70 recipes for building AI solutions for smart homes, industrial IoT, and smart cities. Michael Roshak, Packt Publishing Limited. 2021

- Practical IoT Hacking: The Definitive Guide to Attacking the Internet of Things. Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, Beau Woods. No Starch Press, 2021
- The IoT Hacker's Handbook: A Practical Guide to Hacking the Internet of Things. Aditya Gupta. APress. 2019

9.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction to IoT	4		
Web of things and IoT technologies	2		
Industrial Protocols and Standards	2	Oral presentation	
Smart Cities & Industrial Protocols	2	using slides, discussions (Q&A).	
Data storage and preprocessing	2	Using multimedia	
Cloud & Edge Computing for IoT	2	tools, interactive	
Cybersecurity for IoT	4	teaching tools. Using	
Al for IoT	2	specific software and hardware for	
Federated Learning	2	IoT. Lab assignments	
ML applications in IoT and Industry 4.0 context	4]	
Project presentations	2		

Bibliography

- Hands-On Industrial Internet of Things. 2nd edition. Giacomo Veneri, Antonio Capasso, Packt Publishing Limited, 2024
- Internet of Things and Data Analytics Handbook. Hwaiyu Geng. Wiley 2017
- Machine Learning for Time-Series with Python Ben Auffart, Packt Publishing Limited 2021
- The IoT Hacker's Handbook: A Practical Guide to Hacking the Internet of Things. Aditya Gupta. APress, 2019

10. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

11. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade			
Course	Exam	Written Exam – summative evaluation	50%			
Seminar	Presentation; Demonstration	Oral examination - summative evaluation	20%			
Laboratory	Assignments	Evaluation of assignments during the semester – continuous evaluation	30%			
Project	-	-	-			
Minimum standard of performance: Lab grade + seminar grade >=5, Course evaluation grade >=5						

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	Lect.dr.eng. Raluca Portase	
	Applications	Lect.dr.eng. Raluca Portase	

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

Date of approval in the department	Head of department,
17.09.2025	Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean,
19.09.2025	Prof.dr.eng. Vlad Mureşan