SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study/Qualification	Data Science / Master
1.7 Form of education	Full time
1.8 Subject code	14.20

2. Data about the subject

2.1 Subject name			Neuroscience				
2.2 Course responsible/lecturer		Prof. dr. eng. Dinşoreanu Mihaela - Mihaela.Dinsoreanu@cs.utcluj.ro			C		
2.3 Teachers in charge of s laboratory/project	emin	ars/	Prof. dr. eng. Dinşoreanu Mihaela - Mihaela.Dinsoreanu@cs.utcluj.ro				
2.4 Year of study	П	2.5 Sem	ester	ster 1 2.6 Type of assessment (E – exam, C – colloquium, V – verification)			
2.7 Subject category	DA – de aprofundare, DS – de sinteza, DC – complementară Di			DA			
DI – Impusă, Dop – opțională, Dfac – facultativă			ală, Dfac – facultativă	DO			

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	1	Seminars	1	Laboratory	1	Project	ı
3.2 Number of hours per semester	42	of which:	Course	14	Seminars	14	Laboratory	14	Project	•
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography						15				
(b) Supplementary study in the library, online and in the field						15				
€ Preparation for seminars/laboratory works, homework, reports, portfolios, essays						15				
(d) Tutoring						10				
€ Exams and tests							3			
(f) Other activities:										

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	58
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	
4.2 Competence	Fundamental computer science concepts

5. Requirements (where appropriate)

5.1. For the course	Min 50% attendance required for the final exam
5.2. For the applications	Compulsory attendance required for the final exam

6. Specific competence

6.1 Professional competences	1. Working with advanced mathematical methods and models, engineering and
	computing specific techniques and technologies.
	2. Contextual integration and exploitation of dedicated information systems.
	3. Creative pooling of multidisciplinary knowledge in the field of computers and
	information technology for research, design, optimization, implementation and

	testing of theories, algorithms and original methods specific to artificial intelligence and computer vision systems
6.2 Cross competences	1. Exercising the skill of continuous self-education and demonstrating critical, innovative and research abilities.

7. Discipline objective (as results from the key competences gained)

7. Discipline objective (as results from the key competences gained)					
7.1 General objective	The first objective is to teach and clarify the basics of neuroscience: how				
	neurons function, how they encode and transmit information, what are the				
	main problems of neuroscience. The second objective is to show what are the				
	signals that can be recorded from the brain and what are the analyses useful to				
	probe those signals (in single cells, in population of multiple neurons, and				
	between cortical areas). Third, the final objective is to draw a parallel between				
	the biological computational principles, found in the brain, and the				
	computation principles in the current artificial intelligence field.				
7.2 Specific objectives	1. Introduce the students to neuroscience.				
	2. Provide the biological fundaments for the brain, the neuron and the				
	synapses.				
	3. Explain the generation and transmission of action potential trough				
	mathematical neuronal models, based on the biophysics of neurons and				
	synapses.				
	4. Clarify the basics biological learning mechanisms, such as long-term				
	potentiation and depression.				
	5. Teach basic time-domain and spectral analyses for continuous signals, such				
	as the auto- and cross-correlation, the Fourier transform and alternatives.				
	6. Describe the most used recording techniques, from invasive and non-invasive				
	electrophysiology to calcium imaging, functional magnetic resonance and				
	functional ultrasound imaging.				
	7. Present the challenges of spike sorting: to separate possibly overlapping				
	action potentials.				
	8. Discuss the most prevalent problems and theories in neuroscience, such as				
	the binding problem, consciousness, perception, behaviour etc				
	9. Present the most common techniques used for continuous signals (i.e. local				
	field potential and electroencephalogram) analysis.				
	10. Clarify the difference between continuous signals and the discrete, event-				
	like, nature of action potentials and the most useful spike analysis methods.				
	11. Introduce the functional brain networks: what are those and how to build				
	such networks from neuronal activity.				
	12. Machine learning has been used as a data analysis tool in neuroscience;				
	explain how such techniques can be useful for neuroscience (data and				
	behaviour analysis).				
	13. Reveal the similarities and differences between the computational				
	principles found in biological brains and those underlying artificial intelligence.				

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction to Neuroscience and the Brain	1		
The brain, the neuron, and the synapse	1		
Mathematical neuron models	1		
Learning and plasticity	1	_	
Basics of signal processing	1	Oral presentations,	
Brain recording techniques	1	ppt support, discussions.	
Spike sorting	1	4.00400.01.01	
Problems and theories in neuroscience	1		
Analysis of LFP and EEG data	1		
Spike analysis	1		

Functional brain networks	1	
Machine learning for neural data analysis	1	
Brain vs. artificial intelligence	1	
Final review	1	

Bibliography

- 1. Buzsaki G. 2006. Rhythms of the Brain. Oxford University Press.
- 2. Dayan P, Abbott LF. 2005. Theoretical Neuroscience: Computational And Mathematical Modeling of Neural Systems. 1st edition. ed. Cambridge, Mass.: MIT Press.
- 3. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (Eds.). 2012. Principles of Neural Science, Fifth Edition. 5th edition. ed. New York: McGraw-Hill Education / Medical.
- 4. Nunez PL, Srinivasan R. 2005. Electric Fields of the Brain: The Neurophysics of EEG, 2nd Edition. 2nd ed. Oxford University Press, USA.
- 5. Proakis J, Manolakis D. 2006. Digital Signal Processing. 4th edition. ed. Upper Saddle River, NJ: Pearson.
- 6. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, Mooney RD, Platt ML, White LE (Eds.). 2017. Neuroscience. 6th edition. ed. New York Oxford: Sinauer Associates is an imprint of Oxford University Press.
- 7. Rieke F, Warland D, Steveninck RDRV, Bialek W. 1999. Spikes: Exploring the Neural Code. Reprint edition. ed. Cambridge, Massachusetts London, England: Bradford Books.
- 8. Smith SW. 1997. The Scientist & Engineer's Guide to Digital Signal Processing. First Edition. ed. San Diego, Calif: California Technical Pub.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Scientific writing and reading	2		
2. Journal club	2		
3. Implementing your own neuron	2		
4. Connecting neurons	2		
5. Brain signal pre-processing	2		
6. Brain signal processing	2		
7. Spike sorting	2	Hands-on exercises,	
8. Journal club	2	oral presentations, discussions	
9. Spectral analyses	2		
10. Spike analysis	2		
11. EEG connectivity analyses	2		
12. Classifiers for brain data	2		
13. Journal club	2		
14. Final review and discussions	2		

Bibliography

- 1. Buzsaki G. 2006. Rhythms of the Brain. Oxford University Press.
- 2. Dayan P, Abbott LF. 2005. Theoretical Neuroscience: Computational And Mathematical Modeling of Neural Systems. 1st edition. ed. Cambridge, Mass.: MIT Press.
- 3. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (Eds.). 2012. Principles of Neural Science, Fifth Edition. 5th edition. ed. New York: McGraw-Hill Education / Medical.
- 4. Nunez PL, Srinivasan R. 2005. Electric Fields of the Brain: The Neurophysics of EEG, 2nd Edition. 2nd ed. Oxford University Press, USA.
- 5. Proakis J, Manolakis D. 2006. Digital Signal Processing. 4th edition. ed. Upper Saddle River, NJ: Pearson.
- 6. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, Mooney RD, Platt ML, White LE (Eds.). 2017. Neuroscience. 6th edition. ed. New York Oxford: Sinauer Associates is an imprint of Oxford University Press.
- 7. Rieke F, Warland D, Steveninck RDRV, Bialek W. 1999. Spikes: Exploring the Neural Code. Reprint edition. ed. Cambridge, Massachusetts London, England: Bradford Books.
- 8. Smith SW. 1997. The Scientist & Engineer's Guide to Digital Signal Processing. First Edition. ed. San Diego, Calif: California Technical Pub.

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade	
Course	Understanding of concepts and principles, Solving domain specific problems, Attendance and (inter)activity during class hours	Written Exam	50%	
Seminar	-	-	-	
Laboratory	Activity in class and solving assignments	Continuous evaluation, assignments	50%	
Project	-	-	-	
Minimum standard of performance: the student must score at least five at both the exam and laboratory activity				

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	Prof. dr. eng. Mihaela DÎNŞOREANU	
	Applications	Prof. dr. eng. Mihaela DÎNŞOREANU	

Date of approval in the department 17.09.2025	Head of department, Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean,
19.09.2025	Prof.dr.eng. Vlad Mureşan