SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Data Science / Master
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name			Block	chain		Subject code	13.00	
2.2 Course responsible / lecturer Prof. dr. eng. Tudor Cioara - <u>Tudor.Cioara@cs.utcluj.ro</u>								
2.3 Teachers in charge of Laboratory / project								
2.4 Year of study	Year of study II 2.5 Sei			1	2.6 Type of assessment (E - verification)	exam, C - colloquiur	m, V –	E
Formative ca		native ca	tegory:	regory: DA – advanced, DS – speciality, DC – complementary				DA
2.7 Subject category	Opti	onality: [OI – imp	osed	, DO – optional (alternative),	DF – optional (free	choice)	DI

3. Estimated total time

3.1 Number of hours per week	2	of which:	Course	1	Seminars	1	Laboratory	-	Project	-
3.2 Number of hours per semester	28	of which:	Course	14	Seminars	14	Laboratory	-	Project	-
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography								25		
(b) Supplementary study in the library, online and in the field								25		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								19		
(d) Tutoring								-		
(e) Exams and tests								3		
(f) Other activities:								-		
3.4 Total hours of individual study (sum (3.3(a)3.3(f))) 72										
3.5 Total hours per semester (3.2+3.4)										
3.6 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Distributed Systems
4.2 Competence	Specification, modelling, analysis, critical evaluation, design, implementation and validation of complex distributed systems; Concepts, techniques, methods and algorithms for: concurrency control, agreement, coordination and consensus, distributed transactions, failure tolerance, peer to peer (P2P).

5. Requirements (where appropriate)

5.1. For the course	Projector, Computer, Whiteboard, Internet
5.2. For the applications	Projector, Computer, Whiteboard, Internet

6. Specific competence

6.1 Professional competences	analyse decentralised applications				
	create data models				
	define software architecture				
	design process for blockchain-based systems				
	develop blockchain innovative architectures				
	develop software prototype				
	evaluate blockchain architectures				
	explain blockchain implications				
	explain distributed ledger technologies principles				
	identify blockchain innovation opportunities				
	implement smart contracts				
	interpret technical requirements				
	manage cloud data and storage				
	outline blockchain-based identity management				
	perform scientific research				
	provide technical documentation				
	recognise blockchain application areas				
	recognise blockchain risks				
	use data processing techniques				
	use software libraries				
6.2 Cross competences	The graduate:				
	develop an analytical approach				
	taking a proactive approach				
	 developing strategies to solve problems 				
	being open minded				

7. Expec	ted Learning Outcomes
	The student has knowledge of:
	blockchain
	blockchain application areas
	blockchain applications
	blockchain application security principles
	blockchain architecture
	blockchain components
	blockchain consensus mechanisms
	blockchain design patterns
	blockchain history
υ	blockchain mining principles
Knowledge	blockchain openness
Ν̈́	blockchain platforms
\ \	blockchain terminology
_	blockchain-based business models
	blockchain-based services regulation
	decentralised identifiers
	decentralized application frameworks
	digital identity management
	distributed ledger technologies
	consensus protocols
	distributed ledger technology vulnerabilities
	smart contracts
	smart contract programming languages
	cryptocurrency

	The student is able to:
	analyse decentralised applications
	 design processes for blockchain-based systems
	develop innovative blockchain architectures
	evaluate blockchain architectures
	explain blockchain implications
Skills	 explain the principles of distributed ledger technologies
S	identify innovation opportunities in blockchain
	implement smart contracts
	interpret technical requirements
	outline blockchain-based identity management
	 recognise blockchain application areas
	 recognise blockchain-related risks
	use software libraries
i=	The student has the ability to work independently in order to:
esponsibiliti s and utonomy	develop an analytical approach
esponsib s and utonomy	take a proactive approach
sspor and tond	 develop strategies to solve problems
Re. es aut	be open minded

8. Discipline objective (as results from the key competences gained)

	its from the key competences gamea,
8.1 General objective	The main objective of this discipline is to introduce concepts of blockchain technology and other types of distributed ledger implementations. These will be presented both from the theoretical perspective and from the practical point of view of how they are used to implement decentralized applications in different areas of applicability (e.g. financial, energy, management of distribution flows, medical, etc.). Thus, the aim is to ensure the necessary technical knowledge for the critical evaluation of existing decentralized applications as well as the development and integration of new solutions and applications using blockchain technology.
8.2 Specific objectives	To achieve the general objective, students will study concepts of blockchain technology, and will deepen issues related to scalability, consensus, integration with existing business models, etc. Different use cases and decentralized applications will be critically analysed aiming to understand how the fundamental implementation problems brought by decentralized can be solved.

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes
Introduction, elements of course organization and basic concepts of blockchain technology	1		
Distributed digital ledgers and Bitcoin	1		
Smart contracts and decentralized applications	1		
Scalability problems and solutions	1	Blackboard, video	
Distributed consensus- PoW	1	projector	
Distributed consensus– PoS, PoA	1	presentation and/or online presentations	
Permissioned systems	1	using MS Teams	
Blockchain and IoT	1	platform.	
Blockchain and machine learning	1	Discussions	
Protection of personal data and blockchain	1		
Decentralization of stock exchanges	1		
P2P energy trading	1]	
Decentralized management of distribution flows	1		

Blockchain applications in healthcare

Bibliography

- 1. Blockchain-based decentralized technologies for IoT systems, asset markets and smart grids, Claudia Daniela Antal, Ioan Salomie, Cluj-Napoca: U.T. Press, 2021 978-606-737-504-6
- 2. Mastering Bitcoin: Unlocking Digital Cryptocurrencies, Andreas M. Antonopoulos, ISBN-10: 1449374042, 2014.
- 3. Course website

9.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Presentation of seminar activity	1	Blackboard	
Configure and Start Ethereum node on private network	1	presentations,	
Configure and Start Ethereum node on a test network	1	application presentation,	
Interact with the Ethereum Node	1	thematic papers	
Setup a third-party wallet -MetaMask	1	developed as a	
Create a React application that connects to the MetaMask wallet	2	result of	
Create an Auction SC & deploy it	2	bibliography	
Integrate a NFT in your auction solution	2	research,	
Evaluating a decentralized application using Ethereum	3	presentation with the video projector, face-to-face discussions and / or in the online environment using the MS Teams platform	

Bibliography

- Building Blockchain-based decentralized applications: A practical guide, Claudia Daniela Antal, UTPRESS 2021, ISBN 978-606-737-538-1
- Course website

10. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline aims to develop and complement the concepts and skills acquired during undergraduate studies, proposing to study advanced concepts of decentralization, distributed ledgers and how to use blockchain technology to implement decentralized applications in different fields. These types of applications are becoming increasingly present both in the research area and in the commercial field.

11. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Ability to propose solutions to specific problems in the development of decentralized applications. Presence, (inter)activity during classes.	Face-to-face or online written exam using MS Teams platform	50%
Seminar	Knowledge of existing technologies in the field in the development of decentralized applications. Presence, (inter)activity during classes.	Face-to-face and/or online assessment during the semester using the MS Teams platform	50%
Laboratory			
Project			

Minimum standard of performance:

Understanding the concepts in the studied field and demonstrating the ability to use the new technologies studied for the development of decentralized applications.

Final grade: 50% (laboratory) + 50% (exam)

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

Conditions for participation in the final exam: Laboratory Note \geq 5; Elaboration of a Research Report and its presentation.

Passing conditions: Final exam grade ≥ 5

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	Prof.dr.eng. Tudor CIOARA	
	Applications	Prof.dr.eng. Tudor CIOARA	

Date of approval in the department	Head of department,	
17.09.2025	Prof.dr.eng. Rodica Potolea	
Date of approval in the Faculty Council	Dean,	
19.09.2025	Prof.dr.eng. Vlad Mureşan	