SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Data Science / Master
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name		Image Processing and Computer Vision			essing and Computer	Subject code	11.00	
2.2 Course responsible / I	ecture	er	Prof. dr. eng. Oniga Florin - Florin.Oniga@cs.utcluj.ro					
2.3 Teachers in charge of seminars / Laboratory / project			Lect. dr. eng. Muresan Mircea-Paul - Mircea.Muresan@cs.utcluj.ro					
2.4 Year of study	_	2.5 Sem	nester	ester 2 2.6 Type of assessment (E - exam, C - verification)			m, V –	E
			tegory:	DA -	advanced, DS – speciality, D	OC – complementary	,	DS
2.7 Subject category	Opti	onality: [OI – imp	osed	, DO – optional (alternative),	, DF – optional (free	choice)	DI

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminars	ı	Laboratory	1	Project	-
3.2 Number of hours per semester		of which:	Course		Seminars		Laboratory		Project	
3.3 Individual study:										
(a) Manual, lecture material and	d note	es, bibliogra	aphy							23
(b) Supplementary study in the library, online and in the field							23			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10			
(d) Tutoring								-		
(e) Exams and tests							2			
(f) Other activities:							-			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 58										
3.5 Total hours per semester (3.2+3.4)				100					

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	-
4.2 Competence	Mathematical methods and models that can be applied in image processing

4

5. Requirements (where appropriate)

5.1. For the course	Video projector, blackboard, screen, computer
5.2. For the applications	Computers, equipment and specific software

6. Specific competence

6.1 Professional competences	 analyse big data create data models perform data mining perform scientific research provide technical documentation use data processing techniques utilise machine learning
6.2 Cross competences	 develop an analytical approach taking a proactive approach developing strategies to solve problems

7. Expected Learning Outcomes

7. Expect	leu Leari	ning Outcomes
	•	computer science
	•	data analytics
	•	data models
	•	digital data processing
	•	unstructured data
Knowledge	•	statistics
νleα	•	computer programming
nov	•	software components
¥	•	software libraries
	•	create data sets
	•	develop data processing applications
	•	establish data processes
	•	manage research data
	•	perform dimensionality reduction
	•	process data
	•	use data processing techniques
	•	create data models
	•	interpret technical requirements
/0	•	use software libraries
Skills	•	adapt to changes in technological development plans
Responsibiliti es and autonomy	•	develop an analytical approach
Responsib es and autonomy	•	take a proactive approach
out out	•	develop strategies to solve problems
Respor es and autono		develop strategies to solve problems

8. Discipline objective (as results from the key competences gained)

8.1 General objective	Development of skills and abilities for the design of image processing and			
	computer vision systems in the context of data science			
8.2 Specific objectives	Assimilation of knowledge and skills in the context of data science regarding:			
	- Understanding and using concepts, paradigms, and models of image			
	processing and computer vision.			
	- Studying, designing, implementing, and evaluating modules of applications for			
	image processing and computer vision.			
	- Image processing and computer vision methods.			

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes
Introduction	2	Interactive	

Machine Learning Basics	2	presentation,
Deep Learning Basics	2	student involvement
Computer vision – Deep Learning	2	in presentations and debates, ad-hoc
Image Classification	2	quizzes.
Object Detection 1	2] '
Object Detection 2	2	
Semantic Segmentation	2	
Instance Segmentation	2	
Vision Transformer	2	
Image Generation	2	
Visualization & Understanding	2	
Student presentation – individual activities 1	2	
Student presentation – individual activities 2	2	

Bibliography:

- 1. CS231n: Convolutional Neural Networks for Visual Recognition, http://cs231n.stanford.edu/
- 2. CS 198-126: Modern Computer Vision Fall 2022 (UC Berkeley)
- 3. David Forsyth, Jean Ponce "Computer Vision A Modern Approach", Prentice Hall, USA, 2002
- 4. Gonzalez, R. C., & Woods, R. E. (2007). Digital Image Processing (3rd ed.). Pearson.
- 5. Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer.
- 6. IEEE Transactions on Pattern Analyses and Machine Intelligence
- 7. IEEE Transactions on Image Processing
- 8. CVPR, ECCV and ICCV papers

9.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Advanced Image Preprocessing Techniques for Detection and	2		
Segmentation Feature Extraction, Object Detection and Classification using Advanced Engineering Approaches	2	Experiments and implementation	
Object Detection and Classification using Data Driven Approaches	2	using specific software tools	
Semantic Segmentation Models	2	(Python, Pytorch,	
Multi-Task Networks	2	Anaconda, Jupyter	
Image synthesis using Diffusion Models	2	Notebook)	
Image Annotation	2		

Bibliography:

- 1. Dey, S. (2017). Python Image Processing Cookbook. Packt Publishing.
- 2. Scientific papers IEEE Transactions on Pattern Analyses and Machine Intelligence, IEEE Transactions on Image Processing, CVPR, ECCV and ICCV papers etc.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is carried out through periodic meetings with representatives of the economic environment

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Exam	Written examination. Additional bonus points for activity during lectures and individual (optional) presentations	50%
Seminar	-	-	-
Laboratory	Testing the practical abilities of designing and implementing solutions	Lab assessment (continuous evaluation of activity, written	50%

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

	to specific problems. Attendance and activity.	and oral verification), optional individual activity assessment.		
Project	-	-	-	
Minimum standard of performance: Final grade > 5				

Date of filling in:	Responsible	Title First name Last name	Signature
	Course	Prof.dr.eng. Florin ONIGA	
	Applications	Lecturer.dr.eng. Mircea Paul MURESAN	

Date of approval in the department	Head of department, Prof.dr.eng. Rodica Potolea	
Date of approval in the Faculty Council	Dean, Prof.dr.eng. Vlad Mureşan	