SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master of Science
1.6 Program of study / Qualification	Artificial Intelligence and Vision / Masters
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name			Indus	Industrial InformaticsSubject code8.20				
2.2 Course responsible / lecturer			Prof. d	Prof. dr. eng. Gheorghe Sebestyen - Gheorghe.Sebestyen@cs.utcluj.ro				
2.3 Teachers in charge of s Laboratory / project	semin	ars /	Prof. d	Prof. dr. eng. Gheorghe Sebestyen - Gheorghe.Sebestyen@cs.utcluj.ro				
2.4 Year of study	I	2.5 Sem	nester	ester 2 2.6 Type of assessment (E - exam, C - colloquium, V – verification)			n, V –	E
2.7 Subject estagen	Form	Formative category: DA – advanced, DS – speciality, DC – complementary					DA	
2.7 Subject category	Opti	onality: DI – imposed, DO – optional (alternative), DF – optional (free choice)				DO		

2. Estimated total time

=										
3.1 Number of hours per week	3	of which	Course	2	Seminar	1	Laborator	-	Proiect	-
3.4 Total hours in the curriculum	42	of which	Course	28	Seminar	14	Laborator	-	Proiect	-
3.7 Individual study:										
(a) Manual, lecture material	and n	otes, biblic	graphy							30
(b) Supplementary study in the library, online and in the field						15				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							11			
(d) Tutoring										
(e) Exams and tests							2			
(f) Other activities										
3.8 Total hours of individual study (sumn	n (3.7(a)3	.7(f)))		58					
3 9 Total hours per semester (3.4+3.8)										

3.8 Total hours of individual study (summ (3.7(a)3.7(f)))	58
3.9 Total hours per semester (3.4+3.8)	100
3.10 Number of credit points	4

3. Pre-requisites (where appropriate)

4.1 Curriculum	Microprocessor systems
4.2 Competence	Design of Microprocessor systems

4. Requirements (where appropriate)

5.1 For the course	Projector, blackboard, computer
5.2 For the applications seminarului / laboratorului/proiectului	Projector, blackboard, computer

5. Specific competences

6.1 Professional competences	Applies ICT systems theory			
·	Uses data processing techniques			
	Builds predictive models			
	Utilizes machine learning			
	Develops a computer vision system			
	Applies statistical analysis techniques			
	Integrates system components			
	Designs the information system			
	Analyzes software specifications			
	Defines technical requirements			
	Defines software architecture			
	Uses software libraries			
	Uses software design patterns			
	Oversees software development			
	Analyzes network bandwidth requirements			
	Implements ICT security policies			
	Designs a computer network			
	Maintains internet protocol configurations			
	Implements network diagnostic tools			
	Plans ICT capacity			
	Creates software			
	Integrates ICT data			
	Proposes ICT solutions for business problems			
	Designs the database schema			
6.2 Cross competences	develop an analytical approach			
	taking a proactive approach			
	developing strategies to solve problems			
	being open minded			
	coordinate engineering teams			

7. Expected Learning Outcomes

The student has knowledge of:

- Methods for analyzing business requirements and software specifications
- Techniques for data modeling and process representation using diagrams
- Principles for developing software prototypes and applications for industrial systems
- System architectures and ways to align software with them
- Concepts for integrating system components and designing user interfaces
- Query languages, markup languages, and object-oriented programming
- ICT security policies and risk management strategies
- Computer-aided software engineering tools (CASE tools)
- Data processing techniques and building predictive models
- Script-based programming and use of software libraries
- Structure and functioning of ICT systems, including testing processes
- Methods for generating creative ICT solutions for industrial problems

The student is able to:

- Analyze business requirements and software specifications
- Create data models and process diagrams relevant for industrial applications
- Develop software prototypes and functional applications for industrial systems
- Align software with existing system architectures
- Integrate system components and design intuitive user interfaces
- Use query languages, markup languages, and object-oriented programming in application development
- Implement ICT security policies and manage associated risks
- Efficiently use CASE tools and other software engineering technologies
- Apply data processing techniques and develop predictive models for process optimization
- Write scripts and use software libraries to automate tasks
- Manage ICT systems and perform system testing to ensure quality
- Propose innovative and creative ICT solutions for challenges in industrial environments

Skills

Knowledge

Responsibilities and autonomy

The student has the ability to work independently in order to:

- develop an analytical approach
- take a proactive approach
- develop strategies to solve problems
- be open minded
- coordinate engineering teams

8. Discipline objectives (as results from the key competences gained)

8.1 General objective	Development of competencies and skills for designing and implementing			
8.1 General objective	control systems based on digital technologies			
8.2 Specific objectives	Acquiring knowledge and skills for:			
8.2 Specific objectives	design of dedicated and encapsulated microprocessor systems			
	(embedded)			
	② digital signal processing			
	design of means of communication specific to the industrial			
	environment			
	designing simple, hierarchical and distributed control systems			

9. Contents

9.1. Lecture (syllabus)	Hours	Teaching methods	Notes
Introduction to industrial informatics – short history, basic concepts	2		
Internet of Things (IoT), Internet of Industrial Objects (IioT), cyber-physical systems	2		
Computational models for control systems: IoT, fog and edge computing	2		
Communication in control systems – standards, protocols, design problems	2		
Sensory networks – examples of implementation, routing algorithms, information fusion	2	Lecture, Discussing	
Distributed control systems – design principles, examples of experimental models, model based on distributed services	2	Specific Concepts	
Real-time control of processes – planning strategies and algorithms, techniques for evaluating the response time in the most unfavourable case	2		
Dedicated and encapsulated computing systems	2		
Building automation	2		
Industrial information systems	2		
Digital signal processing – basic, transformed concepts	2		
Digital Signal Processing – Transformed into Z	2		
Numerical filters – design and implementation	2		
Conclusions regarding the use of the calculation technique in the tracking and control of processes	2		

Bibliography:

Bibliography (minimum bibliography of the subject containing at least one reference bibliographic work of the subject, which exists at the disposal of students in an appropriate number of copies)

- 1. G. Sebestyen "Informatica industriala", Ed. Albastra, Cluj-Napoca, 2006
- 2. D. Gorgan, G. Sebestyen, "Designing computers", Blue Publishing House, 2005

9.2 Applications - Seminars / Laboratory / Project	Hours	Teaching methods	Notes
Sensor networks	2		
Building automation	2	Presentations, Specific experiments,	
Real-time systems	2	Discussion	
Quality control and traceability	2		

Industrial networks	2	
Adaptive regulators	2	

Bibliography:

Bibliography (minimum bibliography of the subject containing at least one reference bibliographic work of the subject, which exists at the disposal of students in an appropriate number of copies)

- 1. G. Sebestyen "Informatica industriala", Ed. Albastra, Cluj-Napoca, 2006
- 2. D. Gorgan, G. Sebestyen, "Designing computers", Blue Publishing House, 2005

10. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course is in line with the latest design methodologies used in the profile companies.

11. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	Evaluation of theoretical knowledge	Written exam	70%		
Seminars /Laboratory/Project	Evaluation of practical skills (at seminar presentations)	Evaluation of seminar presentations	30%		
Minimum standard of a afronson					

Minimum standard of performance:

Minimum 5 at written exam and evakuation of seminar presentation

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	Prof. dr. eng. Gheorghe SEBESTYEN	
	Applications	Prof. dr. eng. Gheorghe SEBESTYEN	

Date of approval in the department 17.09.2025	Head of department, Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council 19.09.2025	Dean, Prof.dr.eng. Vlad Muresan