SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Artificial Intelligence and Vision / Masters
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name			Interactive Systems			Subject code	8.10	
2.2 Course responsible	lectu	rer	Prof.d	Prof.dr.eng. Dorian Gorgan - <u>dorian.gorgan@cs.utcluj.ro</u>				
2.3 Teachers in charge of Laboratory / project	of semi	nars /	Prof.d	Prof.dr.eng. Dorian Gorgan - <u>dorian.gorgan@cs.utcluj.ro</u>				
2.4 Year of study	ı	2.5 Sen	2.5 Semester 2 2.6 Type of assessment (E - exam, C - colloquium, V – verification)			m, V –	E	
Formative category: DA – advanced, DS – speciality, DC – complementary					DA			
2.7 Subject category	Opti	onality: I	DI – imp	osed	, DO – optional (alternative),	, DF – optional (free	choice)	DO

3. Estimated total time

3.1 Number of hours per week	3	of which	Course	2	Seminar	1	Laboratory	-	Proje	ect	-
3.2 Total hours per semester	42	of which	Course	28	Seminar	14	Laboratory	-	Project		-
3.3 Individual study:											
(a) Manual, lecture material and notes, bibliography								2	0		
(b) Supplementary study in the library, online and in the field								1	0		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								2	1		
(d) Tutoring							4	ļ			
(e) Exams and tests								(1)	3		
(f) Other activities											
3.4 Total hours of individual study (s	umm (3.3(a)3.3	(f)))		58			•	•		

3.4 Total hours of individual study (summ (3.3(a)3.3(f)))			
3.5 Total hours per semester (3.2+3.4)			
3.6 Number of credit points	4		

4. Pre-requisites (where appropriate)

4.1	Curriculum	Object oriented programming language (e.g., C++, C#)				
4.2	Competence	Software application development methodology				

5. Requirements (where appropriate)

5.1	For the course	Projector, Computer, Blackboard (F2F) Teaching materials will be available on MS Teams platform
5.2	Projector, Computer, Blackboard (F2F) Teaching materials will be available on MS Teams platform	

6. Specific competences

6.1 Professional competences	define technical requirements					
	analysis specifications					
	identifies client needs					
	defines system architectures					
	integrate system components					
	design process					
	deliver visual presentation of data					
	develop creative ideas					
	deliver visual presentation of data					
	creatively use digital technologies					
	use data processing techniques					
	manage system testing					
	align software with system architectures					
	create data models in the context of distributed systems					
	create algorithms and specific programs					
	designs and implements distributed resources					
	generates technical documentation					
	integrate design enterprise architecture					
	design information system					
	utilise machine learning					
	ensures conformity to standards					
	defines and implements instruments for diagnosis					
	conduct scholarly research					
	develop computer vision system					
	apply statistical analysis techniques					
	manage data collection systems					
6.2 Cross competences	The graduate:					
	develop an analytical approach					
	taking a proactive approach					
	 developing strategies to solve problems 					
	being open minded					
	coordinate engineering teams					

7. Expected Learning Outcomes (as results from the key competences gained)

The student has knowledge of:

Knowledge

- algorithms
- artificial neural networks
- business process modelling
- computer programming (Python)
- computer simulation
- data mining
- data models
- data science
- digital data processing
- information architecture
- information categorization
- information extraction
- information structure
- principles of artificial intelligence
- systems development life cycle
- task algorithmicizing
- unstructured data
- visual presentation techniques
- machine learning (computer programming)
- deep learning
- web programming

	computer programming
	information structure
	model-based systems engineering
	The student is able to:
	analyze big data
S	analyze business requirements
Skills	create data sets
S	creatively use digital technologies
	define technical requirements
	deliver visual presentations of data
	design processes
	develop creative ideas
	use data processing techniques
	apply systemic design thinking
	build predictive models
	build recommender systems
	design application interfaces
	identify processes for re-engineering
	utilize machine learning
	acquire system components
	align software with system architectures
	analyze business requirements
	create data models
	define technical requirements
	integrate system components
	manage system testing
	use an application-specific interface
	use markup language
S: >	The student has the ability to work independently in order to:
e litie	develop an analytical approach
Responsibilities and autonomy	take a proactive approach
aut	develop strategies to solve problems
esp	be open-minded
a B	coordinate engineering teams

8. Discipline objective (as results from the key competences gained)

8.1 General objective	The main objective of the discipline is the development of interactive applications by learning the techniques of analysis, specification, design, implementation and evaluation of the components that ensure interaction with the user. The concepts and techniques of software engineering specific to user-
	oriented methodologies are highlighted.
8.2 Specific objective	 To achieve these general objectives, students will learn to: Design the architecture of interactive software systems. Use software tools for the development of interactive applications. Carry out a bibliographic and experimental research activity, the results of which are written in a scientific paper. Produce a scientific synthesis and analysis and, to support an oral presentation of a scientific topic. Carry out a project according to the methodology for the development and evaluation of user-oriented interactive applications. Work individually or in a team.

9. Contents

9.1. Lectures	Hours	Teaching methods	Notes
---------------	-------	------------------	-------

Introduction. History Concepts of user interface development Inputs and outputs communication concepts User-oriented design User interface design methodology Usability in graphical user interfaces Defining user requirements. Task description and analysis User interface prototyping. User interface evaluation Techniques and styles of interaction Conceptual architecture of a computer game Game engines. The architecture of a game engine Computer games development methodology Strategies in computer games	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Multimedia teaching techniques are used in the course. The course is interactive with demonstrations, to exemplify the methodology of developing interactive applications.	Consultations are planned during the semester and before each exam.
	_		
	_		
The components of a strategy. Strategic options	2		

Bibliography (minimum bibliography of the discipline containing at least one bibliographic reference work of the discipline, which is available to students in a corresponding number of copies)

In the UTC-N library

- 1. B. Shneiderman, C. Plaisant, M.S. Cohen, S.M. Jacobs, Designing the User Interface. Strategies for Effective Human Computer Interaction, Addison-Wesley (5th Edition).
- 2. A. Watt, F. Policarpo, 3D Games: Real-time Rendering and Software Technology, Addison-Wesley, 2000.

In virtual library

1. Interactive Sistems Course resources, https://moodle.cs.utcluj.ro/

9.2. Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Computer game development methodology.	1		
Computer game project proposal.	1		
Game analysis and specification. Task description and analysis. Low fidelity prototyping. Game scenarios.	1	Case studies on topics in the field of interactive	
Computer game design. Scene of objects. Game strategy. Interaction techniques. Artificial intelligence techniques.	1	applications, examples using software tools and	Each student develops a
Technology and Implementation Considerations. Unity technology. Game implementation using Unity technology.	1	specialized technologies, presentations on the	project based on initial
Game rating. Evaluation of functional correctness. Usability evaluation. Heuristic evaluation. Evaluators' reports.	1	board, additional explanations, discussions.	requirements.
Development of the final version of the game. Conclusions and final presentation of the project. Presentation of game execution. Presentation of the project report.	1		

Bibliography (minimum bibliography of the discipline containing at least one bibliographic reference work of the discipline, which is available to students in a corresponding number of copies)

In the UTC-N library

- 1. A. Watt, F. Policarpo, 3D Games: Real-time Rendering and Software Technology, Volume 1, Addison-Wesley.
- 2. A. Watt, F. Policarpo, 3D Games, Volume 2: Animation and Advanced Real-time Rendering, Addison-Wesley.

10. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Unlike established software engineering, the course presents the user-oriented methodology widely used in the development of interactive applications. Techniques specific to this methodology based on the concept of usability, user scenarios, prototyping, metaphors, cognitive evaluation, heuristic evaluation, multimodal interaction, etc. are studied and exemplified. The content of the discipline was discussed with important actors in this field, both from

academia and industry, from Romania or other countries. The discipline has been evaluated by ARACIS, along with other master's study programs.

11. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final
			grade
Course	The written exam (E) assesses the knowledge taught in the course. Course activity (CA) reflects active participation in scientific presentations and debates in the course.	Written examination. Assessment during the semester. Online tests using distance education platforms.	30% (E) 10% (CA)
Seminars	The scientific paper (L) demonstrates the ability to carry out a scientific study and the elaboration of a scientific paper or report. The project (P) demonstrates the ability to use the interactive application development methodology.	Scientific paper, Project. Project presentation onsite or online using distance education platform.	30% (L) 30% (P)

Minimum standard of performance

Final mark: M = 0.3*E + 0.3*L + 0.3*P + 0.1*CA

Condition for obtaining credits: $M \ge 5$; $E \ge 5$; $L \ge 5$; $P \ge 5$; $CA \ge 5$.

Date of filling in: 01.09.2025	Responsible	Title First name Surname name	Signature
	Course	Prof.dr.eng. Dorian Gorgan	
	Applications	Prof.dr.eng. Dorian Gorgan	

Date of approval in the department	Head of department,		
17.09.2025	Prof.dr.eng. Rodica Potolea		
Date of approval in the Faculty Council	Dean,		
19.09.2025	Prof.dr.eng. Vlad Mureșan		