
1/5

SYLLABUS

1. Data about the program of study

 1.1 Institution The Technical University of Cluj-Napoca

 1.2 Faculty Faculty of Automation and Computer Science

 1.3 Department Computer Science

 1.4 Field of study Computer Science and Information Technology

 1.5 Cycle of study Master

 1.6 Program of study / Qualification Artificial Intelligence and Vision / Master

 1.7 Form of education Full time

2. Data about the subject

 2.1 Subject name Languages and Type Systems Subject code 7.20

 2.2 Course responsible / lecturer Prof.dr.eng. Eneia Nicolae Todoran – Eneia.Todoran@cs.utcluj.ro

 2.3 Teachers in charge of seminars /
 Laboratory / project

 Prof.dr.eng. Eneia Nicolae Todoran – Eneia.Todoran@cs.utcluj.ro

 2.4 Year of study I 2.5 Semester 2
 2.6 Type of assessment (E - exam, C - colloquium, V –
 verification)

E

 2.7 Subject category
 Formative category: DA – advanced, DS – speciality, DC – complementary DA

 Optionality: DI – imposed, DO – optional (alternative), DF – optional (free choice) DO

3. Estimated total time

 3.1 Number of hours per week 3 of which: Course 2 Seminars 1 Laboratory - Project -

 3.2 Number of hours per semester 42 of which: Course 28 Seminars 14 Laboratory - Project -

 3.3 Individual study:

(a) Manual, lecture material and notes, bibliography 15

(b) Supplementary study in the library, online and in the field 15

(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 15

(d) Tutoring 10

(e) Exams and tests 3

(f) Other activities:

 3.4 Total hours of individual study (suma (3.3(a)…3.3(f))) 58

 3.5 Total hours per semester (3.2+3.4) 100

 3.6 Number of credit points 4

4. Pre-requisites (where appropriate)

4.1 Curriculum Programming Languages, Software Engineering – undergraduate courses

4.2 Competence Operating with computer science and mathematical foundations

5. Requirements (where appropriate)

5.1. For the course Blackboard, Projector, PC with internet access - interactive course

5.2. For the applications Projector, PC with internet access, for the maximum grade the student should
attend at least 70% of the seminar hours

mailto:Eneia.Todoran@cs.utcluj.ro
mailto:Eneia.Todoran@cs.utcluj.ro

2/5

6. Specific competence

6.1 Professional competences analyse software specifications
define technical requirements
analyse big data
apply ICT systems theory
design process
develop creative ideas
align software with system architectures
create software
manage system testing
perform scientific research
provide technical documentation
interpret technical requirements
conduct scholarly research
apply statistical analysis techniques
supervise software development
use software libraries
use software design patterns

6.2 Cross competences develop an analytical approach
taking a proactive approach
developing strategies to solve problems
being open minded
coordinate engineering teams

7. Expected Learning Outcomes

K
n

o
w

le
d

ge

The student has knowledge of:

• algorithms

• business process modeling

• computer programming

• systems development life cycle

• model-based systems engineering

• unified modeling language (UML)

• object-oriented modeling

• agile project management methodology

• systems design methods

• process algorithm formulation

• software frameworks

• ICT system programming

• software for integrated development environments (IDE)

• apply communication skills in the technical field

Sk
ill

s

The student is able to:

• analyse software specifications

• define technical requirements

• analyse big data

• apply ICT systems theory

• develop creative ideas

• align software with system architectures

• create software applications

• supervise software development

• develop software prototypes

• utilise computer-aided software engineering tools

• develop cloud computing services

• find solutions to problems

3/5

R
es

p
o

n
si

b
ili

ti
e

s

an
d

 a
u

to
n

o
m

y
 The student has the ability to work independently in order to:

• develop an analytical approach

• take a proactive approach

• develop strategies to solve problems

• be open minded

• coordinate engineering teams

8. Discipline objective (as results from the key competences gained)

8.1 General objective The main objective of this discipline is to provide specific knowledge and to
prepare students for the use of formal and semantic models in the design and
verification of computing systems. The knowledge is presented in the context
of programming and specification languages and process calculi, with an
emphasis on static type checking, dynamic semantics, performance modelling
and formal verification of the properties of computing systems.

8.2 Specific objectives To achieve these general objectives, students will:
• Learn to specify and formally design computer languages and systems via
their operational semantics and type systems
• Learn to formally verify properties of languages and systems
• State and prove properties of programs based on their semantics
• Learn techniques for designing and verifying the properties of languages and
systems (induction, fixed point semantics, bisimulation)
• Learn to apply advanced design principles and paradigms
• Study how semantic techniques allow solving complex problems in formal
design, performance evaluation, formal verification
• Learn to apply formal methods in the specification, development and
verification of software systems

9. Contents

9.1 Lectures Hours Teaching methods Notes

Introduction and overview of the course 2

Interactive course,
exposition,
examples,
questions,
discussions

Semantic styles, operational semantics 2

Untyped lambda-calculus (ULC): syntax and evaluation relation 2

ULC: Nameless representation of terms (De Bruijn terms) 2

Simply typed lambda-calculus (STLC): syntax and typing relation 2

STLC: properties of typing (progress and preservation theorems) 2

Simple extensions: tuples, variants, general recursion, lists 2

Semantic interpreter for STLC - Haskell implementation 2

Introduction to process algebras and bisimulation 2

Bisimulation and algebraic semantics: concurrency and nondeterminism 2

Introduction to CCS (Calculus of Communicating Systems) 2

Bisimulation and algebraic semantics in CCS (1) 2

Bisimulation and algebraic semantics in CCS (2) 2

Compositionality properties 2

Bibliography:

• B. Pierce, Types and Programming Languages, MIT Press, 2002.

• B. Pierce, Advanced Topics in Types and Programming Languages, MIT Press, 2005.

• B. Pierce et al, Software Foundations, https://softwarefoundations.cis.upenn.edu, 2025.

• R. Milner. Communicating and mobile systems: the pi-calculus, Cambridge Univ. Press, 1999.

• D. Sangiorgi, Introduction to Bisimulation and Coinduction, Cambridge University Press, 2011.

• E.M. Clarke et al, Handbook of Model Checking, Springer, 2018.

• R. Harper, Practical Foundations for Programming Languages, Cambridge University Press, 2016.

• E.N. Todoran, Types and Programming Languages (lecture notes), Technical University of Cluj-Napoca,

https://softwarefoundations.cis.upenn.edu/

4/5

https://ftp.utcluj.ro/pub/users/gc/LST/tpl-2025.pdf, 2025.

• E.N. Todoran. Introducere in Semantica Limbajelor de Programare, Note de curs si seminar, Universitatea
Tehnica din Cluj-Napoca, http://users.utcluj.ro/~eneia/aplc-2016.pdf, 2016.

9.2 Applications - Seminars/Laboratory/Project Hours Teaching methods Notes

Structural operational semantics 2

Exposition,
examples,
questions,
discussions

Semantic design with transition systems 2

Semantic design techniques: direct and continuation semantics 2

Nameless representation of lambda-terms: substitution and beta-reduction 2

Design and Haskell implementation of a semantic interpreter for STLC 2

Concurrent systems verification with process algebras 2

Algebraic laws for CCS in bisimulation semantics 2

Bibliography

• B. Pierce, Types and Programming Languages, MIT Press, 2002.

• B. Pierce et al, Software Foundations, https://softwarefoundations.cis.upenn.edu, 2025.

• R. Milner. Communicating and mobile systems: the pi-calculus, Cambridge Univ. Press, 1999.

• E.M. Clarke et al, Handbook of Model Checking, Springer, 2018.

• D. Sangiorgi, Introduction to Bisimulation and Coinduction, Cambridge University Press, 2011.

• E.N. Todoran, Types and Programming Languages (lecture notes), Technical University of Cluj-Napoca,

https://ftp.utcluj.ro/pub/users/gc/LST/tpl-2025.pdf, 2025.

• PRISM probabilistic model checker www.prismmodelchecker.org

*Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional

associations and employers in the field

This course introduces basic knowledge in the fields of Semantics, Type Systems and Formal Methods. The
presentation is made in the context of programming and specifications languages and process calculi. The languages
and systems under consideration are described mathematically using formal syntax and are endowed with formal
(static and dynamic) semantics. From an engineering perspective, this discipline offers important knowledge for the
development of computing systems that impose strict quality standards: reliability, operational safety, measurable
performance, etc. Each student must elaborate a scientific paper (an essay or a technical report). For the elaboration
of the paper students can choose from a wide variety of topics: advanced topics in types and programming languages,
model checking, dependent types, session types, runtime verification, nature inspired models of computation (DNA
computing, membrane computing), process calculi, etc. The content of the discipline is synchronized with the latest
advances in the field, based on monographs, studies and courses taught at prestigious universities in Europe and the
USA.

10. Evaluation

Activity type Assessment criteria Assessment methods
Weight in the

final grade

Course The ability to solve problems specific
to the field, attendance and activity
during the course hours

Written exam - summative
75%

Seminar The ability to solve problems specific
to the field, attendance and activity in
seminar classes

Elaboration of a scientific paper,
seminar assignments -
continuous

25%

Laboratory - - -

Project - - -

Minimum standard of performance: Modeling and solving semantic design problems, by using the formal apparatus
specific to the field (type systems, operational semantics, bisimulation).

https://ftp.utcluj.ro/pub/users/gc/LST/tpl-2025.pdf
http://users.utcluj.ro/~eneia/aplc-2016.pdf
https://softwarefoundations.cis.upenn.edu/
https://ftp.utcluj.ro/pub/users/gc/LST/tpl-2025.pdf
http://www.prismmodelchecker.org/

5/5

Date of filling in:
01.09.2025

Responsible Title First name Last name Signature

Course Prof.dr.eng. Eneia-Nicolae TODORAN

Applications Prof.dr.eng. Eneia-Nicolae TODORAN

Date of approval in the department
17.09.2025

Head of department,
Prof.dr.eng. Rodica Potolea

Date of approval in the Faculty Council
19.09.2025

Dean,
Prof.dr.eng. Vlad Mureșan

