SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Artificial Intelligence and Vision
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name		Introduction in Quantum Machine Learning Subject code 5.00					0		
2.2 Course responsible / lecturer				Dr. fiz. Zârbo Liviu - Liviu.Zarbo@itim-cj.ro					
2.3 Teachers in charge of seminars / Laboratory / project Dr. fiz. Levente Mathe – levente.mathe@itim-cj.ro									
2.4 Year of study	ı	I 2.5 Semes		1	2.6 Type of assessment (E - exam, C - colloquium, V – verification)		Е		
			tegory: DA – advanced, DS – speciality, DC – complementary						
2.7 Subject category		onality: I	OI – imp	osed	, DO – optional (alternative), D	OF – optional (free choice)	DI		

3. Estimated total time

3.1 Number of hours per week	2	of which:	Course	1	Seminars	1	Laboratory	-	Project	-
3.2 Number of hours per semester	42	of which:	Course	28	Seminars	14	Laboratory	-	Project	-
3.3 Individual study:										
(a) Manual, lecture material an	d note	es, bibliogra	aphy							10
(b) Supplementary study in the library, online and in the field							10			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10			
(d) Tutoring							0			
(e) Exams and tests								3		
(f) Other activities:								0		
3.4 Total hours of individual study (su	ıma (3	3.3(a)3.3(1	f)))		72					

3.5 Total hours per semester (3.2+3.4)

3.6 Number of credit points

100

4. Pre-requisites (where appropriate)

4.1 Curriculum	Linear Algebra
	Mathematical Analysis
	Physics
	Programming
4.2 Competence	

5. Requirements (where appropriate)

5.1. For the course	
5.2. For the applications	

6. Specific competence

6.1 Professional competences	Basic knowledge of linear algebra and calculus, first year undergraduate student level Basic programming knowledge, first year undergraduate student level
6.2 Cross competences	

7. Expected Learning Outcomes

Knowledge	Qubits, quantum circuits, basic quantum algorithms, quantum machine learning algorithms
Skills	Implementing a quantum algorithm on a quantum platform (e.g. Uranium); Being able to utilize frameworks (e.g. Qiskit) for implementing quantum algorithms.
Responsibiliti es and autonomy	

8. Discipline objective (as results from the key competences gained)

o. Discipline objective (as res	o. Discipline objective (as results from the key competences gamea)					
8.1 General objective	Developing general knowledge relevant to applications in the field of quantum					
	computation and quantum machine learning					
8.2 Specific objectives	1. Assimilating the basics of quantum computation: qubits, quantum gates,					
	quantum circuits, quantum algorithms					
	2. Developing the basic skills for developing quantum algorithms					
	3. Understanding the basics of quantum machile learning.					

9. Contents

1. Introductory notions.		Teaching methods	Notes
 From classical to quantum computing The dual behavior of the quantum objects Tunneling Double slit experiment 	2	Blackboard, video-	
2. Quantum states Notations Probabilities Matrix and vector representation of quantum states Qubits Pure states and mixed states	2	lectures, discussions of examples, problem solving	

3. Obs	ervables and quantum measurement 1		
•	Observables and operators		
•	The Heisenberg principle	2	١
•	Projective measurements		
•	The Stern-Gerlach experiment		ļ
4. Obs	ervables and quantum measurement 2		
•	Quantum state vectors.		
•	Observables and operators, the density matrix.	2	
•	Probabilities and expectation values.		
•	Partial measurements		l
5. Qub	pits		
•	The two-level system and real life examples		
•	Quantum gates	2	
•	Superpositions and entanglement of qubits		
•	The Bloch sphere.		l
6. Qua	intum measurement and applications 1.		l
•	The no-cloning theorem		l
•	Quantum teleportation	2	١
•	Quantum sensing		l
•	Quantum tomography		
7. Qua	intum measurement and applications 2.		1
•	Quantum random number generation		
•	Quantum communication protocols (BB84).	2	
•	Quantum cryptography notions		
•	Quantum communication networks.		l
8. Qua	intum circuits and algorithms		
•	Quantum circuits		l
•	Density matrices, noise	2	l
•	Entanglement		
•	Computational complexity.		
9 Qua	antum algorithms 1.		1
•	Deutsch-Josza algorithm.	2	
•	Grover algorithm		
10 00	antum algorithms 2.		
10. Qu	Quantum Fourier transform	2	
•	RSA and Shor's algorithm		l
11. QN			1
-			
•	Encoding classical data into quantum states	_	
•	Parametrized quantum circuits	2	
•	Hybrid models		
12.01	41.2		
12. QN		2	
•	Variational quantum algorithms	2	١
•	Quantum kernel methods		ļ
13. QN			
•	HHL, QGAN algorithms	2	
14 App	olications & outlook		
•	Current hardware limits	2	١
•	Where QML might realistically help		
Biblios	graphy:		

Bibliography:

- Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).
- David McIntyre, Quantum Mechanics: A Paradigms Approach, Pearson Addison-Wesley (2012).
- Cohen-Tannoudji, Quantum Mechanics, Wiley-VCH; 2nd edition (2019).
- Maria Schuld & Francesco Petruccione, Machine Learning with Quantum Computers (Springer, 2021, 2nd ed.)

9.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes

Visualising qubit operations: Bloch sphere, single qubit gates, destructive and constructive interference (Quantum Odyssey)	2	
2. Quantum circuits in Uranium/Qiskit	2	Lab work in INCDTIM Quantum
3. Generating entanglement in quantum circuits (quantum gates: CNOT, SWAP, Toffoli). Visualisation in Q. Odyssey, circuits on the Uranium platform.	2	Software lab, using tools such as Uranium, Quantum
4. Deutsch algorithm/Grover algorithm	2	Oddyssey, Google
5. Quantum Fourier Transform	2	Colab.
6. Variational algorithms	2	
7. HHL algorithm	2	

Bibliography

- Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).
- David McIntyre, Quantum Mechanics: A Paradigms Approach, Pearson Addison-Wesley (2012).
- Cohen-Tannoudji, Quantum Mechanics, Wiley-VCH; 2nd edition (2019).
- Maria Schuld & Francesco Petruccione, Machine Learning with Quantum Computers (Springer, 2021, 2nd ed.)

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade	
Course	Solving 2 problems + 1 theory set of questions	Written exam	60%	
Seminar				
Laboratory	-	Periodic lab quizzes	40%	
Project	-	-	-	
Minimum standard of	performance:	. L		

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	Dr. Liviu Zarbo	
	Applications	Levente Mathe	

Date of approval in the department	Head of department,	
17.09.2025	Prof.dr.eng. Rodica Potolea	
Date of approval in the Faculty Council	Dogn	
1	Dean,	
19.09.2025	Prof.dr.eng. Vlad Mureșan	

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.