SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Artificial Intelligence and Vision/ Master
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name		Disti	tributed Systems Subject code 3.00					
2.2 Course responsible / I	ecture	er	Prof. dr. eng. Salomie Ioan <u>- Ioan.Salomie@cs.utcluj.ro</u>					
2.3 Teachers in charge of Laboratory / project	semir	nars /	Prof. dr. eng. Salomie Ioan - <u>Ioan.Salomie@cs.utcluj.ro</u> Prof. dr. eng. Cioara Tudor - <u>Tudor.CIOARA@cs.utcluj.ro</u> Prof. dr. eng. Anghel Ionuţ - <u>Ionut.ANGHEL@cs.utcluj.ro</u>					
2.4 Year of study	_	2.5 Sem	nester	2.6 Type of assessment (F - exam. C - colloquium. V -			Е	
Formative category: DA – advanced, DS – speciality, DC – complementary			DA					
2.7 Subject category Optionalit		onality: I	OI – imp	osed	, DO – optional (alternative),	DF – optional (free	choice)	DI

3. Estimated total time

2.1 Number of hours nor week	1	of which:	Course	2	Cominors	1	Laboratory		Droiset	
3.1 Number of hours per week	3	or which:	Course	2	Seminars	1	Laboratory	-	Project	-
3.2 Number of hours per semester	42	of which:	Course	28	Seminars	14	Laboratory	-	Project	-
3.3 Individual study:										
(a) Manual, lecture material an	d not	es, bibliogra	aphy							30
(b) Supplementary study in the library, online and in the field							15			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							11			
(d) Tutoring							-			
(e) Exams and tests							2			
(f) Other activities:						-				
3.4 Total hours of individual study (su	uma (3	3.3(a)3.3(1	f)))		58					
3.5 Total hours per semester (3.2+3.4	1)				100					

4. Pre-requisites (where appropriate)

3.6 Number of credit points

	,
4.1 Curriculum	-
4.2 Competence	-

4

5. Requirements (where appropriate)

5.1. For the course	Projector, Computer, Blackboard (F2F)
	Teaching materials will be available on MS Teams platform
5.2. For the applications	Projector, Computer, Blackboard (F2F)
	Teaching materials will be available on MS Teams platform

6. Specific competence

6. Specific competence	
6.1 Professional competences	define technical requirements
	analysis specifications
	identifies client needs
	defines system architectures
	integrate system components
	design process
	develops services for distributed systems
	develop creative ideas
	creatively use digital technologies
	use data processing techniques
	align software with system architectures
	create data models in the context of distributed systems
	create algorithms and specific programs
	designs and implements distributed resources
	generates technical documentation
	integrate design enterprise architecture
	design information system
	utilise machine learning
	ensures conformity to standards
	defines and implements instruments for diagnosis
6.2 Cross competences	The graduate:
·	develop an analytical approach
	taking a proactive approach
	developing strategies to solve problems
	being open minded
	 coordinate engineering teams

7. Expected Learning Outcomes

7. Exped	ted Learning Outcomes
	distributed computational models
	distributed algorithms and programs, snapshots and checkpointing
	causality and systems of logical clocks
	availability and consistency, CAP
	termination detection
	scalability techniques
	coordination, agreement, consensus and associated algorithms
ge	rollback and recovery from errors
νlec	fault modeling
Knowledge	dependability, fault tolerance and resiliency
호	distributed and federative learning models
	uses digital technologies in a creative way
	applies systems theory
	defines technical requirements
	uses machine learning
	designs architectures of complex distributed systems
	integrate system components
	identifies processes for re-engineering
	aligns software and service platforms to systems architecture
	designs information systems
	designs processes
	manages system testing
	implements security policies
	implements scalability techniques
Skills	implements resilient and fault tolerance techniques
Ϋ́	applies critical thinking in designing and assessing distributed systems

Responsibilities and autonomy

The student has the ability to work independently in order to:

- develop an analytical approach
- take a proactive approach
- develop strategies to solve problems
- be open-minded
- coordinate engineering teams

8. Discipline objective (as results from the key competences gained)

8.1 General objective	The in-depth study of concepts, techniques, algorithms and advanced methods of specification, modeling, analysis, design, implementation and validation of complex distributed systems; Knowledge of current distributed computing and systems and their applications.
8.2 Specific objectives	-Knowledge and working with specification, modeling, analysis, critical evaluation, design, implementation and validation of complex distributed systems' concepts, methods, techniques and algorithms regarding coordination and agreement, quality of service, availability, consistency and scalability, distributed transactions, service oriented computing, event and data flows, resilience, fault tolerance and recovery, distributed ledgers and decentralized computing, distributed and federated machine learning. -Knowledge of distribution systems based on modern technologies such as Blockchain, Edge, Fog and Cloud, IoT, Cyber-Physical Systems, Big Data, Intelligent Energy and Smart Grids.

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes
Part 1 – Topics of Distributed Computing	2		
Fundamentals of Distributed Computing (Causality, Logical Time, Global States and Snapshots)	2	- Presentations with video-	
QoS, Availability, Consistency, Scalability	2	projector, chalk	
Classes of Distributed Algorithms, Performance metrics	2	and blackboard, live discussions,	
Coordination and Agreement (termination detection, mutual exclusion, leader election, consensus)	2	questions / answers	
Distributed Transactions, Concurrency Control, Distributed Storage	2	- Students are	
Service Oriented Distributed Computing	2	invited to	
Resiliency, Fault Tolerance, Checkpointing and Recovery	2	participate in	
P2P, Distributed Ledgers, Decentralized Computing	2	research projects	
Distributed and Federated Machine Learning	2	projects	
Part 2 – Modern Distributed Systems	2		
Cloud, Edge, and Fog-based Systems	2		
Decentralized Blockchain-based Systems	2		
IoT, Cyber-Physical Systems	2		
Big Data Analytics, Platforms and Systems	2		
Intelligent Energy, Smart Grids	2		

Bibliography:

- 1. Maarten van Steen, Andrew S. Tanenbaum Distributed Systems, 4e, 2023
- 2. Ratan K. Ghosh, Hiranmay Ghosh Distributed Systems, Theory and Applications, Wiley, 2023
- 3. R. Vitillo Understanding Distributed Systems, 2022
- 4. Coulourris, G., Dollimore, J., Kindberg, T. Distributed Systems. Concepts and Design, Addison Wesley, 5th Edition, 2012
- 5. Kshemkalyani, A.D., Singhal, M Distributed Computing. Principles, Algorithms and Systems, Cambridge Univ. Press, 2008
- 6. Santoro, N. Design and Analysis of Distributed Algorithms, Wiley 2007

- 7. Guanhua Wang Distributed Machine Learning with Python, Pact Publishing, 2022
- 8. M. Tamer Özsu, Patrick Valduriez Principles of Distributed Database Systems, 4e, Springer, 2020
- 9. Sukumar Ghosh Distributed Systems, Chapman & Hall/CRC, 2015
- 10. Ioan Salomie, Tudor Cioara, Ionut Anghel, Tudor Salomie Distributed Computing and Systems. A Practical Approach, Editura Albastra, 2008
- 11. Clauda Daniela Antal, Ioan Salomie Blockchain-based Decentralized Technologies for IoT Systems, Asset Markets and Smart Grids, UT Press, 2021

9.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Context Awareness, Ambient Intelligence, Smart Buildings, Smart Cities	1		
Autonomic Computing and Self-organizing Systems	1		
Web3, Virtual Worlds, Metaverse	1		
Cloud Computing, Resource Allocation, Edge and Fog computing	1		
Bio-inspired/Nature-inspired Computing in Distributed Computing	1		
Business Process Management	1		
Internet of Things (IoT), Platforms and Systems	1		
Cyber-Physical Systems (CPS), Industry 4.0 (Smart Factories), Smart Grids	1		
Complex Systems: Modeling, Simulation, Optimization, Adaptivity	1		
Green Computing, Data Centres	1		
Distributed Data Streams, Big-Data, Map-Reduce, Hadoop, Spark	1		
Distributed and Federated Machine Learning	1		
Decentralized Systems and Applications (DApps). Blockchain	1		
Evaluation	1		

Bibliography

- 1. IEEE Explore Digital Library, https://www.computer.org/csdl/home
- 2. ACM Digital Library, https://dl.acm.org/
- 3. Elsevier Science Direct Journals, https://www.sciencedirect.com/
- 4. Springer Lecture Notes in Computer Science (LNCS), https://link.springer.com/
- 5. MDPI Journals, https://www.mdpi.com/
- 6. Relevant conference proceedings (subdomain specific)
- 7. Relevant research centers

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Periodical discussions with representatives of outstanding employers.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	The ability to conceptualize, synthesize, analyse, specify, and critically evaluate, domain specific problems	Written exam	50%
Seminar	The ability to yield and present a research study / report about the state of the art of a modern distributed computing / system as a result of investigating relevant resources (journals, conference proceedings, and research centres to identify main research questions, domain challenges and research achievements and	Continuous evaluation during seminar sessions	50%

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

	highlighting the relevant techniques, methods, algorithms, models, methodologies and platforms.	
Laboratory	-	
Project	-	

Minimum standard of performance:

- Knowledge of the notions, concepts, issues, techniques and fundamental elements and their inter-relationship, related to distributed computing and modern distributed systems.
- Elaboration of an original, critical, research study / report about one of the application areas of modern distributed computing / systems.
- Exam participation condition: Elaboration and submission of the research study / report.
- Exam pass conditions: Grade 5 in the written exam and in the seminar evaluation.

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	Prof.dr.eng. Ioan SALOMIE	
	Applications	Prof.dr.eng. Ioan SALOMIE	
		Prof.dr.eng. Tudor CIOARA	
		Prof.dr.eng. Ionuț ANGHEL	

Date of approval in the department	Head of department,	
17.09.2025	Prof.dr.eng. Rodica Potolea	
Date of approval in the Faculty Council 19.09.2025	Dean, Prof.dr.eng. Vlad Mureşan	