SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Artificial Intelligence and Vision
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name		Computer Networks Subject code 2.00						
2.2 Course responsible / lecturer Prof. dr. eng. Dădârlat Vasile - Vasile.Dadarlat@cs.utcluj.ro								
2.3 Teachers in charge of Laboratory / project	chers in charge of seminars / Prof. dr. eng. Dădârlat Vasile - Vasile.Dadarlat@cs.utcluj.ro							
2.4 Year of study	ı				2.6 Type of assessment (E - verification)	pe of assessment (E - exam, C - colloquium, V – cation)		
Formative ca		tegory:	DA -	- advanced, DS – speciality, D	OC – complementary		DA	
2.7 Subject category	Opti	onality: I	OI – imp	osed	, DO – optional (alternative),	DF – optional (free o	choice)	DI

3. Estimated total time

_										
3.1 Number of hours per week	3	of which:	Course	2	Seminars	1	Laboratory	-	Project	-
3.2 Number of hours per semester	42	of which:	Course	28	Seminars	14	Laboratory	-	Project	-
3.3 Individual study:										
(a) Manual, lecture material an	d note	es, bibliogra	aphy							20
(b) Supplementary study in the library, online and in the field							10			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							15			
(d) Tutoring								11		
(e) Exams and tests							2			
(f) Other activities:							-			
3.4 Total hours of individual study (su	ıma (3	3.3(a)3.3(1	f)))		58					
3.5 Total hours per semester (3.2+3.4	1)				100					

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Computer Networks – BSc level
4.2 Competence	Fundamentals of engineering and informatics

4

5. Requirements (where appropriate)

5.1. For the course	Video projector, attendance min. 50%
5.2. For the applications	Video projector, attendance 100%

6. Specific competence

6. Specific competence	
6.1 Professional competences	C1 - Operation with mathematical methods and models, techniques and
	technologies specific to advanced engineering and informatics
	C1.1 - Demonstration of advanced theoretical and practical concepts
	and principles related to communication and distributed systems
	C1.2 - Use of specific theories and tools to explain the structure of
	complex communication and distributed systems
	C1.3 - Use of models for different components of communication and
	complex distributed systems under partial specification conditions
	C1.4 - Formal and comparative evaluation for the characteristics of
	the communication networks and complex distributed systems
	C1.5 - Substantiation of the characteristics of complex
	communication and distribution systems, based on modern theoretical and
	practical trends
	C2 - Development of advanced techniques, methods and methodologies
	specific to communication networks and distributed systems
	C2.1 - Recognition of techniques, methods, methodologies and
	advanced technologies used in digital communication systems, computer
	networks, mobile wireless systems, distributed computing
	C2.2 - Setting the conditions of use for different computing
	platforms, communication servers, application servers, database servers,
	communication standards, programming environments
	 C2.3 - Development of applications based on new techniques,
	methods and methodologies for communication networks and distributed
	systems
	C2.4 - Assessment of the need for technologies, resources,
	equipments and their integration and adaptation into complex systems
	C2.5 - Research, development and implementation of new, advanced
	techniques, methods and methodologies specific to communication networks
	and distributed systems
6.2 Cross competences	N/A
	l

7. Expected Learning Outcomes

71 Expecte	ed Learning Outcomes
	apply ICT systems theory
	create data sets
	define technical requirements
	design process
	develop creative ideas
	deliver visual presentation of data
	creatively use digital technologies
	use data processing techniques
	manage system testing
	assess ICT knowledge
	manage database
۵.	implement ICT security policies
dge	use an application-specific interface
Ν	utilise machine learning
Knowledge	conduct scholarly research
고	

	The student is able to:
	manage ICT data architecture
	manage data
	manage quantitative data
	manage research data
	process data
	 store digital data and systems
	 use data processing techniques
	use databases
	create data models
	analyse decentralised applications
	 debug software
	 interpret technical requirements
10	use software libraries
Skills	 utilise computer-aided software engineering (CASE) tools
S	 adapt to changes in technological development plans
υ	The student has the ability to work independently in order to:
i <u>≓</u>	develop an analytical approach
sibi	take a proactive approach
Responsibilitie s and autonomy	 develop strategies to solve problems
espc and uton	be open minded
a s R	coordinate engineering teams

8. Discipline objective (as results from the key competences gained)

8.1 General objective	Preparing students and providing up-to-date information in the field of wide area networks, sensor networks, network security, Internet architecture. It aims to increase the capacity of analysis within the specific field, as well as to
	develop skills for design.
8.2 Specific objectives	Acquiring new theoretical knowledge specific to modern computer networks and security in computer networks New skills and abilities acquired: - Performance evaluation in high-speed networks, routing techniques in WANs, basic elements of network security (vulnerabilities, attacks, encryption, authentication), sensor network design elements - Configuration of MPLS routers, configuration of security equipment (virtual networks, firewall), elaboration of synthesis materials for specific subdomains

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes
MPLS (MultiProtocol Label Switching): MPLS concept; MPLS terminology (labels, equivalent classes, nodes in the MPLS network domain, switched paths); assigning, distributing and storing labels; protocols for signaling and distribution of labels; operations in the field of MPLS network.	4		
MPLS-VPN (virtual private networks based on MPLS): models of virtual private networks (overlay, peer); MPLS-VPN terminology (provider network, client network, routers, site, VRF table); MPLS-VPN model; packet transmission mechanism; the steps of defining/configuring a virtual private MPLS network.	4	Oral exposures. Presentation using	
InfiniBand (Infinite Bandwidth): tcp/ip stack limitations in a data center; definition of the InfiniBand concept; architecture and components: links, channel adapters, switches, routers, management components; communication and I/O operations: queues, communication semantics, remote DMS; communication		slides, discussions (Q&A), onsultations. The use of multimedia means, interactive	

architecture; keys, virtual memory addressing, shared domains; virtual lines, QoS, multicast; management; comparison with other technologies (interfaces: PCI, PCI-X, interconnection technologies: Myrinet, Quadrics).	4	teaching style, offering programs for self-testing, attraction in research
Architectures for implementing elements of Quality of Service	2	contracts, consultations.
Architectures for implementing elements of security in computer networks; security fundamentals.	4	
Gear for implementing security	2	
Private key encryption	2	
Public key encryption	2	
Authentication	2	
Specificity of security in wireless sensor networks	2	

Bibliography:

- V.Dadarlat, E.Cebuc Retele Locale de Calculatoare-de la cablare la interconectare, Ed. Albastra, 2006
- W. Stallings Data and Computer Communications, Prentice Hall, 2007
- W. Stallings Cryptography and Network Security, Prentice Hall, 2007
- Peter Tomsu, Gerhard Wieser MPLS Based VPNS: Designing Advanced Virtual Networks, Prentice Hall, 2001
- Tom Shanley- InfiniBand Network Architecture, Addison-Wesley, 2002

9.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes
MPLS signaling protocols: comparative analysis	1	Oral exposure.	
MPLS based virtual private networks: design	1	Presentation using	
QoS implementation: test cases	1	slides, discussions (Q&A), consultations.	
Algorithms for encription based on private key	2	The use of multimedia	
Standards for public key encription	2	means, interactive	
		teaching style, offering	
		programs for self-	
		testing, attraction in	
		research contracts,	
		consultations.	

Bibliography

- . V.Dadarlat, E.Cebuc Retele Locale de Calculatoare-de la cablare la interconectare, Ed. Albastra, 2006
- 2. W. Stallings Data and Computer Communications, Prentice Hall, 2007
- 3. W. Stallings Cryptography and Network Security, Prentice Hall, 2007
- 4. Peter Tomsu, Gerhard Wieser MPLS Based VPNS: Designing Advanced Virtual Networks, Prentice Hall, 2001
- 5.Tom Shanley- InfiniBand Network Architecture, Addison-Wesley, 2002

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the discipline was discussed with teachers in the field from our country (Politehnica Bucharest and Timisoara), but also abroad (France, Ireland, Finland), being evaluated and endorsed by ARACIS.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Ability to analyze specific problems The power of synthesis of information related to a specific subdomain.	The exam consists of checking theoretical knowledge (questions) in writing (2 hours), plus the evaluation of a report (synthesis material) based on topics in the field.	70%

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

Seminar	Ability to solve specific problems.	Colloquium based on written answers.	30%
Laboratory	N/A		
Project	N/A		

Minimum standard of performance:

Minimum standard of performance: Solving design problems, elaborating synthesis studies for specific subdomains with a minimum of personal vision.

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	Prof.dr.eng. Vasile Teodor DĂDÂRLAT	
Applications P ₁	Prof.dr.eng. Vasile Teodor DĂDÂRLAT		

Date of approval in the department	Head of department,
17.09.2025	Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean,
19.09.2025	Prof.dr.eng. Vlad Mureşan