SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Artificial Intelligence and Vision
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name Virtua				ty		Subject code	16.00	
2.2 Course responsible / lecturer				Assoc. prof. dr. eng. Victor-Ioan Bâcu - victor.bacu@cs.utcluj.ro				
2.3 Teachers in charge of seminars / Assoc. prof. dr. eng. Victor-loan Bâcu - victor.bacu@cs.utcluj.ro Laboratory / project								
2.4 Year of study	II	nester	3	2.6 Type of assessment (E - verification)	exam, C - colloquiur	n, V –	E	
Formative of		native ca	tegory:	DA -	- advanced, DS – speciality, [OC – complementary		DS
2.7 Subject category	Opti	onality: [OI – imp	osed	, DO – optional (alternative)	, DF – optional (free	choice)	DI

3. Estimated total time

J. Estimated total time										
3.1 Number of hours per week	3	of which:	Course	2	Seminars		Laboratory	1	Project	
3.2 Number of hours per semester	42	of which:	Course	28	Seminars		Laboratory	14	Project	
3.3 Individual study:										
(a) Manual, lecture material an	d note	es, bibliogra	aphy							20
(b) Supplementary study in the library, online and in the field								25		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								30		
(d) Tutoring									5	
(e) Exams and tests								3		
(f) Other activities:										
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 83										
3.5 Total hours per semester (3.2+3.4) 125										

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Programming in a high-level object-oriented language (Ex. C++, Java).
4.2 Competence	The methodology of developing software applications.

5

5. Requirements (where appropriate)

5.1. For the course	Minimum course attendance of 75% for admission to the final exam.
5.2. For the applications	100% mandatory attendance for admission to the final exam.

6. Specific competence

6.1 Professional competences	Analyse business requirements
	Analyse big data
	Define technical requirements
	Design process
	Develop creative ideas
	Deliver visual presentation of data
	Creatively use digital technologies
	Use data processing techniques
	Create data models
	Assess ICT knowledge
	Manage database
	Implement ICT security policies
	Integrate system components
	Design enterprise architecture
	Design information system
	Use an application-specific interface
	Manage data collection systems
6.2 Cross competences	Develop an analytical approach
	Taking a proactive approach
	Developing strategies to solve problems
	Being open minded
	Coordinate engineering teams

7. Expecte	Learning Outcomes
	The student has knowledge of:
	algorithms
	computer simulation
	digital data processing
	information architecture
	information categorization
	information extraction
	information structure
	systems development life cycle
	unstructured data
	 visual presentation techniques
	digital systems
	hardware platforms
	system design
	systems development life cycle
ge	computer programming
νlec	information structure
Knowledge	 model-based systems engineering
Ž	task algorithmicizing

	The student is able to:
	creatively use digital technologies
	define technical requirements
	deliver visual presentations of data
	design processes
	develop creative ideas
	use data processing techniques
	apply systemic design thinking
	assess ICT knowledge
	design application interfaces
	design database schemas
	identify processes for re-engineering
	align software with system architectures
	create data models
	define technical requirements
	integrate system components
	manage databases
Skills	use an application-specific interface
S	use markup language
Si ,	The student has the ability to work independently in order to:
litie D m	develop an analytical approach
sibi	take a proactive approach
Responsibilities and autonomy	develop strategies to solve problems
esp	be open-minded
a 22	coordinate engineering teams

8. Discipline objective (as results from the key competences gained)

8.1 General objective	The discipline's main objective is to learn the concepts of developing Virtual Reality applications by acquiring the techniques of analysis, specification,
	design, implementation, and evaluation of the components that ensure
	interaction with the user in the virtual space. The concepts, techniques, and
	hardware and software technologies specific to the field of virtual reality are
	highlighted.
8.2 Specific objectives	To achieve these general objectives, students will learn to:
	 Design the architecture of interactive virtual reality systems.
	 Use software tools and current technologies for the development of
	interactive virtual reality applications;
	 Carry out a bibliographic and experimental research activity;
	Carry out a project in the field of virtual reality according to the methodology
	of development and evaluation of interactive applications.

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes
Introduction	2		
Conceptual architecture of Virtual Reality systems. The field of virtual reality applications.	2		
Computational architectures for virtual reality. Graphics engines.	2	Presentation on the	
Tracking, calibration and registration.	2	blackboard,	
Input devices in virtual reality systems.	2	presentation with	N/A
Output devices in virtual reality systems.	2	the video projector, discussions	
Interaction techniques with objects in the virtual space.	2		
Situated visualization.	2		
Modelling, processing, and visualization of the virtual spaces.	2		

Physical models. Particle-based models. Modelling of dynamic 3D surfaces.	2
Augmented reality.	2
Visual coherence.	2
Software components for modelling, processing and graphic visualization of virtual space.	2
Interaction and navigation.	2

Bibliography (minimum bibliography of the discipline containing at least one bibliographic reference work of the discipline, which is available to students in an appropriate number of copies). In the UTC-N library:

- 1. G. C. Burdea, P. Coiffet, Virtual Reality Technology, J. Wiley & Sons, Second Ed., 2003.
- 2. W.R. Sherman, A.B. Craig, Understanding Virtual Reality. Interface, Application, and Design, M. Kaufmann Publ., 2003.

In virtual libraries: 1. Virtual Reality Course, http://moodle.utcluj.ro/

9.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction to Virtual and Augmented Reality applications.	1	Case studies on	
Software components for modeling, processing and graphic visualization of virtual space.	1	topics in the field of interactive virtual	
Technologies, tools and environments for the development of Augmented Reality applications.	1	reality applications, examples using	
Technologies, tools and environments for the development of Virtual Reality applications.	1	software tools and specialized	N/A
Input and output devices in virtual reality systems.	1	technologies, blackboard	
Interaction techniques with objects in the virtual space.	1	presentations,	
Tracking, calibration and registration.	1	additional explanations, discussions.	

Bibliography:

Bibliography (minimum bibliography for applications containing at least one reference bibliographic work of the discipline that is available to students in an appropriate number of copies)

In the UTC-N library

- 1. G. C. Burdea, P. Coiffet, Virtual Reality Technology, J. Wiley & Sons, Second Ed., 2003.
- 2. W.R. Sherman, A.B. Craig, Understanding Virtual Reality. Interface, Application, and Design, M. Kaufmann Publ., 2003.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course presents the concepts, architectures, technologies, and applications of Virtual Reality. Rendering and graphic visualization techniques, user interaction with 3D objects, navigation in virtual space, modelling of physical systems, modelling of geographic virtual space, user input and output devices, etc. are studied and exemplified. The content of the discipline was discussed with important actors in this field, both from the academic and the industrial environment, from Romania or other countries. The discipline has been evaluated by ARACIS, along with other master's study programs.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	The written exam (E) verifies the acquisition of the knowledge taught in the course.	Written exam	45%
	Course activity (CA) reflects active participation in the scientific presentations and debates in the course.	Checks along the way, discussions	10%

Seminar			
Laboratory			
Project	The project (P) demonstrates the ability to use virtual reality technologies in building interactive applications.	Project	45%

Minimum standard of performance: Final grade: N = 0.45*E + 0.45*P +0.1*AC

The condition for obtaining credits: $N\geq 5$; $E\geq 5$; $P\geq 5$; $AC\geq 5$.

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	Assoc.prof.dr.eng. Victor-Ioan BÂCU	
Applications	Assoc.prof.dr.eng. Victor-loan BÂCU		

Date of approval in the department	Head of department,
17.09.2025	Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean,
19.09.2025	Prof.dr.eng. Vlad Mureșan