SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Artificial Intelligence and Vision/Master
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name		Progi	gramming Engineering Subject code 14.00					
2.2 Course responsible / lecturer Prof.dr.ing. Mihaela Dinsoreanu - mihaela.dinsoreanu@cs.utcluj.ro					ıtcluj.ro			
2.3 Teachers in charge of Laboratory / project	semir	nars /	Prof.d	Prof.dr.ing. Mihaela Dinsoreanu - mihaela.dinsoreanu@cs.utcluj.ro				
2.4 Year of study	II	2.5 Sem	nester	ester 1 2.6 Type of assessment (E - exam, C - colloquium, V – verification)			E	
2.7 Subject category		ategory: DA – advanced, DS – speciality, DC – complementary					DA	
		onality: [OI – imp	osed	, DO – optional (alternative),	DF – optional (free	choice)	DI

3. Estimated total time

E										
3.1 Number of hours per week	3	of which:	Course	2	Seminars	1	Laboratory	-	Project	-
3.2 Number of hours per semester	42	of which:	Course	28	Seminars	14	Laboratory	-	Project	-
3.3 Individual study:										
(a) Manual, lecture material an	d note	es, bibliogra	aphy							20
(b) Supplementary study in the	librar	y, online ar	nd in the	field						15
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							17			
(d) Tutoring							4			
(e) Exams and tests							2			
(f) Other activities:							-			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 58										
3.5 Total hours per semester (3.2+3.4)										

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Software design
4.2 Competence	Development of techniques, technologies, methods and methodologies specific
	for information systems: Innovative design of specific information systems

5. Requirements (where appropriate)

5.1. For the course	Projector, board, computer with internet access
5.2. For the applications	Projector, computers with internet access

6. Specific	competence
	analyse software specifications
	analyse software architectures
	create data models
	 create software solutions
	 define technical requirements
	design process
	 use data processing techniques
	acquire system component
	 align software with system architectures
	manage system testing
	assess ICT knowledge
	manage database
	implement ICT security policies
	integrate system components
	 design enterprise architecture
ces	design information system
ten	 use an application-specific interface
ibet	use markup languages
mo:	build predictive models
al c	build recommender systems
ion	utilise machine learning
6.1 Professional competences	conduct scholarly research
rof	develop computer vision system
1 P	apply statistical analysis techniques
9	 manage data collection systems
	The graduate:
ces	develops an analytical approach
SS ten	takes a proactive approach
Cross	 develops strategies to solve problems
6.2 Cross competences	• is open minded
) 9	 coordinates engineering teams

7. Expected Learning Outcomes

Knowledge

The student has knowledge of:

- algorithms
- artificial neural networks
- business process modelling
- computer programming (Python)
- data mining
- data models
- data science
- information architecture
- information extraction
- information structure
- principles of artificial intelligence
- query languages
- systems development life cycle
- task algorithmisation
- unstructured data
- visual presentation techniques
- machine learning (computer programming)
- business analytics
- business intelligence
- computer vision
- database development tools
- deep learning
- operational research
- database development tools
- system design
- systems development life cycle
- systems theory
- web programming
- ICT process quality models
- ICT project management methodologies
- ICT security legislation
- ICT system integration
- ICT system programming
- computer programming
- defence standard procedures
- information structure
- model-based systems engineering
- security engineering

	The student is able to:
	analyse big data
	analyse business requirements
	apply ICT systems theory
	• create data sets
	define technical requirements
	design processes
	develop statistical software
	use data processing techniques
	apply systemic design thinking
	assess ICT knowledge
	build predictive models
	build recommender systems
	 design application interfaces
	design database schemas
	 identify processes for re-engineering
	manage ICT data classification
	manage ICT semantic integration
	 manage business knowledge
	 perform dimensionality reduction
	utilise machine learning
	acquire system components
	align software with system architectures
	apply ICT systems theory
	create data models
	 design enterprise architecture
	design information systems
	implement ICT security policies
	integrate system components
"	manage databases
Skills	manage system testing
S	use an application-specific interface
	The student has the ability to work independently in order to:
es <	develop an analytical approach
iliti om	take a proactive approach
isib	develop strategies to solve problems
pon	be open-minded
Responsibilities and autonomy	coordinate engineering teams
т ю	

8. Discipline objective (as results from the key competences gained)

8.1 General objective	The main objective of this discipline is to provide specific information and prepare students to create software projects that meet quality requirements. Thus, it aims to provide the ability to analyze different architectural and design alternatives, to make the most appropriate architectural decisions for the context in order to design any type of application, with an emphasis on optimizing its performance as much as possible.
8.2 Specific objectives	To achieve these general objectives, students will: • Aim to understand and solve both the functional requirements of a software system and its quality requirements (availability, performance, security, scalability, etc.) • Study existing architectural solutions at different levels of granularity (architectural styles, architectural and design patterns) • Study evaluation metrics of different qualitative aspects (complexity, reliability, availability, etc.) • Learn to analyze requirements and design applicable architectural alternatives;

Learn to evaluate architectural solutions by applying specific evaluation models;

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes
Introduction	2		
Fundamentals of Metrics and Measurement	2	-	
Agile Process Models and Practices	2	-	
Requirements Engineering	2		
Planning (Measuring Size, Complexity, Effort)	2	Blackboard	
Planning (Estimating Time and Cost)	2	presentation, video	
Monitoring (Metrics)	2	projector	
Defect Metrics	2	presentation, discussions, course	
Reliability Metrics	2	materials, quizzes,	
Availability Metrics	2	Moodle platform	
Scalability Metrics	2		
Security	2		
Architecture Evaluation Models	2		
Recap and Conclusions	2		

Bibliography:

- Software Metrics: A Rigorous and Practical Approach, by Norman Fenton, James Bieman, Third Edition, CRC Press, Inc., Boca Raton, FL, 2014
- Software Engineering, 10th Edition, Ian Sommerville, Pearson ed. 2016
- Righting software, Juval Lowy, O'Reilly, 2020
- Software Architecture: The Hard Parts, Ford, Neal, Richards, Mark, Sadalage, Pramod, & Dehghani, Zhamak. (2021). O'Reilly Media, Inc.
- Diferite articole

9.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Complexity Measurement	2		
Effort Estimation	2		
Project Planning	2		
Defect Metrics	2	Presentation, Discussions	
Reliability Metrics	2	Discussions	
Availability Metrics	2		
Scalability Metrics	2		

Bibliography

- Software Metrics: A Rigorous and Practical Approach, by Norman Fenton, James Bieman, Third Edition, CRC Press, Inc., Boca Raton, FL, 2014
- Software Engineering, 10th Edition, Ian Sommerville, Pearson ed. 2016
- Righting software, Juval Lowy, O'Reilly, 2020
- Software Architecture: The Hard Parts, Ford, Neal, Richards, Mark, Sadalage, Pramod, & Dehghani, Zhamak. (2021). O'Reilly Media, Inc.
- Diferite articole

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Since this discipline is very important for the qualitative evaluation of software system design, its content is as modern as possible because it recapitulates the principles of software design, the principles of project design, then metrics for evaluating software projects from different quality perspectives. The content of the discipline was discussed with important actors in this field, both academic and industrial, from Romania, Europe and the U.S. The discipline was

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

evaluated, together with the master's study program Artificial Intelligence and Vision, by ARACIS.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	Ability to solve problems specific to the field Presence, (inter)activity during classes	Quizes during classes (continuous), Written Exam - summative	60%		
Seminar	Ability to solve problems specific to the field Presence, (inter)activity during classes	Presentation of a relevant research topic - summative	40%		
Laboratory	-	-	-		
Project	-	-	-		
Minimum standard of performance: Seminar grade >=5; Exam grade >=5					

Date of filling in: 01.09.2025	Responsible	Title First name Last name	Signature
	Course	Prof.dr.ing. Mihaela DÎNŞOREANU	
	Applications	Prof.dr.ing. Mihaela DÎNŞOREANU	

Date of approval in the department 17.09.2025	Head of department, Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean,
19.09.2025	Prof.dr.eng. Vlad Mureșan