SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Information Theory and Statistics/ Masters
1.7	Form of education	Full time
1.8	Subject code	9.00

2. Data about the subject

2.1	Subject name				Information Theory ar	nd Statistics	
2.2	Subject area				Mathematics		
2.2	Course responsible/lecturer				Prof. Dr. Ioan Rasa, Ioan.Rasa@math.utcluj.ro		
2.3	Teachers in charge of seminars				Prof. Dr. Ioan Rasa, Ioan.Rasa@math.utcluj.ro		
2.4 Year of study I 2.5 Semester 2		2	2.6 Assessment		Exam		
2.7 Subject category		Form	Formative category: DA – advanced, DS – speciality, DC – complementary			y, DC – complementary	DS
		Optic	onality: DI – impo	osed, D	0 – optional (alternativ	ve), DF – optional (free choice)	DI

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar	1	3.3 Laborator	-	3. Proi	3 ect	-
3.4 Total hours in the curriculum	28	of which	3.5 Course	14	3.6 Seminar	14	3.6 Laborator	-	3.6 Proiect		-
3.7 Individual study:											
(a) Manual, lecture material and notes, bibliography							2	0			
(b) Supplementary study in the library, online and in the field							2	0			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	5			
(d) Tutoring							1	4			
(e) Exams and tests							(1)	3			
(f) Other activities							-	-			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 72											
3.9 Total hours per semester (3.4+3.8) 100											
3.10 Number of credit points 4											

4. Pre-requisites (where appropriate)

4.1	Curriculum	Mathematical Analysis, Linear Algebra, Special Mathematics
4.2	Competence	According to the above disciplines

5. Requirements (where appropriate)

5.1	For the course	black board, projector, computer
5.2	For the applications	computers, specific software

6. Specific competences

Professional	C1 - Operation with mathematical methods and models, techniques and advanced
competences	specific engineering and IT technologies
	 C1.1 - Knowledge and demonstration of advanced theoretical and practical
	concepts and principles in the field of software systems
	• C1.2 - The use of specific theories and tools (algorithms, schemes, models, tools,
	etc.) to explain the structure and mode of operation of the latest software
	technologies, environments and program systems reported in the specialized
	scientific literature
	C1.3 - The use of specific models and methods for the identification of viable
	software components and solutions under conditions of partial specification
	 C1.4 - Formal and comparative evaluation of the characteristics of software
	development methods, techniques and models, as well as complex software systems.
	• C1.5 - Theoretical foundation of the characteristics of complex software systems,
	based on modern theoretical and practical trends used in all stages of the software
	development cycle (specification, analysis, design, implementation, testing and
	integration, validation).
	C2 - Development of advanced techniques, methods and methodologies in the field
	of software design, environments and program systems and their applications.
	• C2.1 - Identifying and describing the structure and functioning of complex software
	systems and the applications developed based on them
	• C2.2 - Exploitation of specialized knowledge in order to identify and understand the
	methodologies and techniques for making hardware and software components
	• C2.3 - Building original software components of advanced program systems, using
	algorithms, techniques, design methods, methodologies, protocols, programming
	languages, data structures, technologies and complex programming environments,
	reported in specialized literature.
	• C2.4 - The use of methods, criteria and metrics for evaluation and selection of
	software systems implementation methodologies, of their functional and non-
	functional characteristics
	• C2.5 - The development of original software projects, their implementation, testing
	and validation based on the innovative combination of those reported in the
	specialized literature
	N/A
Cross competences	

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Studying, designing, implementing and evaluating probabilistic and statistical models
7.2	Specific objectives	Knowledge of data analysis and processing methods, determination and optimization of statistical parameters

8. Contents

8.1. Lecture (s	yllabus)	Number of hours	Teaching methods	Notes

Probability, entropy, information	2
Discrete and continuous random variables	2
Mean and variance	2
Correlation and regression	2
The method of least squares	2
Statistical hypothesis testing	2
Maximum likelihood method	2
Bayesian estimation techniques	2
Markov chains	2
Limit distribution. Examples	2
Shannon entropy	2
Transmission of information	2
Coding	2

Bibliography

1. Ioan Rasa, Lectures on Probability Theory and Stochastic Processes, U.T.Pres 2006

2. Ioan Rasa, Teoria Probabilitatilor si Aplicatii, ITCN 1994

3. C.Jalobeanu, I.Rasa, Incertitudine si decizie. Statistica si probabilitati aplicate in management, U.T.Pres 2001

4. T.K.Moon, Wynn C.Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice Hall 2000.

5. S.T. Cover, J. Thomas, Elements of information theory 2nd ed-(Wiley, 2006)

8.2. Seminars /Laboratory/Project	Number of hours	Teaching methods	Notes
Probability, entropy, information	2		
Discrete random variables, Continuous random variables	2		
Correlation	2		
Markov chains	2		
Shannon entropy	2		
Transmission of information	2		
Coding	2		

Bibliography

1. Ioan Rasa, Lectures on Probability Theory and Stochastic Processes, U.T.Pres 2006

2. Ioan Rasa, Teoria Probabilitatilor si Aplicatii, ITCN 1994

3. C.Jalobeanu, I.Rasa, Incertitudine si decizie. Statistica si probabilitati aplicate in management, U.T.Pres 2001

4. T.K.Moon, Wynn C.Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice Hall 2000.

5. T.T. Soong, Fundamentals of Probability and Statistics for Engineers, Wiley-Interscience, 2004

6. S.T. Cover, J. Thomas, Elements of information theory 2nd ed-(Willy, 2006)

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the discipline was discussed with colleagues from other departments in order to corroborate with the expectations of representatives of the epistemic community, associations, professionals and employers in the field related to the program

10. Evaluation

Activity type 10.1 Assessment criter	a 10.2 Assessment methods	10.3 Weight in the
--------------------------------------	---------------------------	--------------------

			final grade				
10.4 Course	Knowledge of theoretical principles and results. Problem solving skills	Onsite written exam/online written exam – Microsoft Teams	30% theory				
10.5 Seminars	Problem solving skills.	Onsite written exam/online written	70% problems				
/Laboratory/Project	Presence. Activity	exam – Microsoft Teams	70% problems				
10.6 Minimum standard of performance							
The ability to coherently present a theoretical result and to solve problems with an applicative nature.							

Date	of	filling	in:

Lecturer Teachers in charge of application Prof.dr. Ioan Rasa Prof.dr. Ioan Rasa

Title Surname Name

Date of approval in the department 20.02.2024

Date of approval in the faculty council 22.02.2024

Head of department Prof.dr.ing. Rodica Potolea

Dean Prof.dr.ing. Mihaela Dinsoreanu

Signature