SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Master of Science
1.6	Program of study/Qualification	Artificial Intelligence and Vision
1.7	Form of education	Full time
1.8	Subject code	8.2

2. Data about the subject

2.1	Subject name				Industrial Informatics		
2.2	Subject area				Computers		
2.2	Course responsible/lecturer				Prof. Dr. Eng. Gheorghe Sebestyen		
2.3	Teachers in charge of seminars				Prof. Dr. Eng. Gheorghe Sebestyen		
2.4 Year of study 1 2.5 Semester 2			2	2.6 Assessment	E– e xam, C– c olloq., V- v erif.	E	
2.7 Subject category		Formative category: DA –			- advanced, DS – speciality, DC – complementary		DA
2.7 3	2.7 Subject category		tionality: DI – im	posed	, DO – optional (alterna	ative), DF – optional (free choice)	DO

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	1	3.3 Laborator	0	3.3 Proie	ect	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	14	3.6 Laborator	0	3.6 Proie	ect	0
3.7 Individual study:											
(a) Manual, lecture material a	nd not	es, bibliogr	aphy							30	C
(b) Supplementary study in the library, online and in the field							15	5			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								1:	1		
(d) Tutoring											
(e) Exams and tests							2				
(f) Other activities											
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58											
3.9 Total hours per semester (3.4+3.8) 100											
3.10 Number of credit points 4											

4. Pre-requisites (where appropriate)

4.1	Curriculum	N.A.
4.2	Competence	N. A.

5. Requirements (where appropriate)

5.1	For the course	Projector, blackboard, computer
5.2	For the applications	Projector, blackboard, computer

6. Specific competences

Professional	C2 - Development of advanced techniques, methods, and methodologies in the field of software
competences	design, software environments and systems and their applications
competences	C2.1 - Identification and description of the structure and functioning of complex software
	systems and applications developed on their basis
	C2.2 - Exploitation of specialized knowledge in order to identify, understand and
	functional and non-functional characteristics, of quality, security and performance, of the
	latest advanced systems of programs reported in the specialized scientific literature
	C2.3 - Building original software components of advanced program systems, using
	algorithms, techniques, design methods, methodologies, protocols, programming
	languages, data structures, technologies and complex programming environments,
	reported in the literature
	C2.4 - Use of methods, criteria and metrics for evaluation and selection of methodologies
	for the realization of software systems, their functional and non-functional characteristics
	C2.5 - Elaboration of original software projects, their implementation, testing and
	validation based on the innovative combination of those reported in the specialized
	literature
	C3 - Specification, analysis, modeling, design, verification, testing, validation, and maintenance
	of advanced software systems and software components, using industry-specific tools
	Image: C3.1 - Demonstration of knowledge of technologies, programming environments, CASE
	software development tools and complex program system concepts
	C3.2 - Analysis and explanation of the role, interactions and functioning of the software
	components developed on the basis of the latest methodologies for the realization of
	complex software systems proposed in the scientific literature
	C3.3 - Innovative analysis, modeling and design of computer systems and computer subjections, maletal handware, and as fragmentation.
	applications, related nardware and software components
	C3.4 - Comparative evaluation, synthetic, including experimental, of solution
	C2 E Development and implementation of original coftware solutions for domain
	specific problems, starting from a set of specified informal requirements
	CA - Contextual integration and integrity of complex software systems
	\square C4 - Contextual integration and integrity of complex software systems
	integration elements specific to software systems taken both as a whole and by modules
	7 C4 2 - Using interdisciplinary knowledge to adapt complex software systems in relation
	to the dynamic requirements of the application field
	C4.3 - Combined use of classical and original principles and methods for component
	integration, ensuring security, encryption, safety and ease of operation of complex
	program systems
	C4.4 - Use of guality, safety and security standards in information processing and
	integration of complex software systems
	• C4.5 - Realization of interdisciplinary projects, including problem identification and
	analysis, specification development, software design, implementation of functional
	testing and evaluation of specific quality, security and performance criteria, as well as
	validation of the integrated software system.
Cross	NA
competences	

7. Discipline objectives (as results from the *key competences gained*)

7 1	General objective	Development of competencies and skills for designing and implementing			
/.1		control systems based on digital technologies			
		Acquiring knowledge and skills for:			
	Specific objectives	design of dedicated and encapsulated microprocessor systems			
		(embedded)			
7.2		I digital signal processing			
		design of means of communication specific to the industrial			
		environment			
		designing simple, hierarchical and distributed control systems			

8. Contents

0.1. Lesture (sullebus)	Number of	Teaching	Netes				
8.1. Lecture (synabus)	hours	methods	Notes				
Introduction to industrial informatics – short history, basic concepts	2						
Internet of Things (IoT), Internet of Industrial Objects (IioT), cyber-	2						
physical systems		-					
Computational models for control systems: IoT, fog and edge computing	2						
Communication in control systems – standards, protocols, design problems	2						
Sensory networks – examples of implementation, routing	2	-					
Distributed control systems – design principles, examples of	2	-					
experimental models, model based on distributed services	2	Lecture,					
Real-time control of processes – planning strategies and algorithms,	2	Discussing					
techniques for evaluating the response time in the most		Specific					
Dedicated and encapsulated computing systems	2	Concepts					
Building automation	2	-					
	2	-					
	2						
Digital signal processing – basic, transformed concepts	2						
Digital Signal Processing – Transformed into Z	2						
Numerical filters – design and implementation	2						
Conclusions regarding the use of the calculation technique in the tracking and control of processes	2						
Bibliography (minimum bibliography of the subject containing at least one reference bibliographic work of the subject, which exists at the disposal of students in an appropriate number of copies) 1. G. Sebestyen "Informatica industriala", Ed. Albastra, Cluj-Napoca, 2006 2. D. Gorgan, G. Sebestyen, "Designing computers", Blue Publishing House, 2005							
	Number of	Teaching	Netes				
8.2. Seminars /Laboratory/Project	hours	methods	Notes				
Sensor networks	2						
Building automation	2	Presentations,					
Real-time systems	2	Specific					
Quality control and traceability	2	Discussion					
Industrial networks 2							
Adaptive regulators 2							
 Bibliography (minimum bibliography of the subject containing at least one reference bibliographic work of the subject, which exists at the disposal of students in an appropriate number of copies) 1. G. Sebestyen "Informatica industriala", Ed. Albastra, Cluj-Napoca, 2006 2. D. Gorgan, G. Sebestyen, "Designing computers", Blue Publishing House, 2005 							

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course is in line with the latest design methodologies used in the profile companies.

10. Evaluation

	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the	
Activity type	10.1 Assessment citteria	10.2 Assessment methods	final grade	
10.4 Course	Evaluation of theoretical	Written exam	70%	

	knowledge					
10.5 Seminars	Evaluation of practical skills	Evaluation of seminar	20%			
/Laboratory/Project	(at seminar presentations)	presentations	5076			
10.6 Minimum standard of performance						
Minimum 5 at written e	Minimum 5 at written exam and evakuation of seminar presentation					

Date	of	fillin	g in:
------	----	--------	-------

Title Surname Name

Signature

Lecturer Teachers in charge of application Prof. dr. eng. Gheorghe Sebestyen Prof. dr. eng. Gheorghe Sebestyen

Date of approval in the department 20.02.2024

Head of department Prof.dr.ing. Rodica Potolea

Date of approval in the faculty council 22.02.2024

Dean Prof.dr.ing. Mihaela Dinsoreanu