SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master of Science
1.6 Program of study / Qualification	Computer science/ Master
1.7 Form of education	Full time
1.8 Subject code	7.3

2. Data about the subject

2.1 Subject name			Algori	thms	and Computability	
2.2 Course responsible / le	ecturer Prof.Dr.Ing. Potolea Rodica – <u>Rodica.Potolea@cs.utcluj.ro</u>					
			Conf.dr.ing. Ciprian Oprisa - <u>Ciprian.Oprisa@cs.utcluj.ro</u>			
2.3 Teacher in charge of se	mina	inars / Conf.dr.ing. Ciprian Oprisa - <u>Ciprian.Oprisa@cs.utcluj.ro</u>				
laboratory / project			Conf.Dr.Ing. Lemnaru Camelia – <u>Camelia.Lemnaru@cs.utcluj.ro</u>			
2.4 Year of study	Ш	II 2.5 Semester 3 2.6 Type of assessment (E - exam, C - colloquium, V -			E	
			verification)			
2.7 Subject category	Form	Formative category: DA – advanced, DS – speciality, DC – complementary				DS
	Optio	onality: [DI – imp	osed,	, DO – optional (alternative), DF – optional (free choice)	DO

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	1	Seminars		Laboratory	1	Project	1
3.2 Number of hours per semester	42	of which:	Course	14	Seminars		Laboratory	14	Project	14
3.3 Individual study:					· · · ·					
(a) Manual, lecture material and notes, bibliography								20		
(b) Supplementary study in the library, online and in the field								9		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							20			
(d) Tutoring								4		
(e) Exams and tests								5		
(f) Other activities:								0		
3.4 Total hours of individual study (sum (3	3.3(a)3.3((f)))		58					
3.5 Total hours per semester (3.2+3.4) 100										
3.6 Number of credit points					4					

4. Pre-requisites (where appropriate)

4.1 Curriculum	Data Structures, Programming Techniques, Algorithms
4.2 Competence	Algorithms performance evaluation, Knowledge of fundamental algorithms on basic data structures
	basic data structures

5. Requirements (where appropriate)

5.1. For the course	Blackboard, projector, computer
5.2. For the project	Computers

6. Specific competence

6.1 Professional	C1 - Working with advanced mathematical methods and models, engineering and
	computing specific techniques and technologies.
competences	
	 C1.1 – Knowledge and proof of concepts and principles, both theoretical and practical from the software domain.
	 C1.2 – Applying specific theory and instruments (algorithms, diagrams, models and tools) for explaining the structure and operation mode of the recent
	technologies in software, programming environments and programming systems from the scientific literature .
	• C1.3 – Using specific models and methods for identifying software components and solutions that are viable for incomplete specifications.
	C2 - Development of advanced techniques, methods and methodologies in the domains of software design, programming systems and environments and their applications.
	• C2.1 – Identifying and describing the structure and operation mode for complex software systems and applications based on them.
	 C2.2 – Building original software components for advanced programming systems, using algorithms, techniques, data structures, technologies and complex programming environments described in the scientific literature.
	 C3.3 – Using criteria, techniques and metrics for evaluating and selecting software systems building methodologies, functional and non-functional characteristics.
6.2 Cross competences	CT3 - Exercising the skill of continuous self-education and demonstrating critical, innovative and research abilities.

7. Discipline objective

7.1 General objective	Acquiring problem-solving skills specific to data analysis tasks, identifying potential solutions and selecting appropriate ones.
7.2 Specific objectives	 Complexity computation Distinguishing between complexity classes Approximating computationally hard problems Knowledge of algorithms specific to big data

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Algorithms complexity	2	Discussion and	
Complexity classes; P vs. NP, NP-Completeness	2	multimedia materials	
NP-complete problems; reduction algorithms	2	Interractive	
NP-complete problems approximation	2	teaching style	
Sublinear algorithms for big data	2	students in presenting some	N/A
Linear programming	2	case studies	,
Searching in big data	2	Problems solving	

Bibliography

1. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to algorithms*. MIT press, 2022.

2. Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. *Mining of massive data sets*. Cambridge university press, 2020.

3. Feldman, Moran. Algorithms for Big Data. World Scientific, 2020.

8.2 Applications (seminars/laboratory/project)*	Hours	Teaching methods	Notes
Experimental analysis of the algorithms complexity	1	Discussion	
Identifying the algorithms complexity classes	1	and	

Reduction algorithms for NP-Complete problems	1	multimedia materials	
Approximation algorithms for NP-Complete problems	1	Study of	N/A
Implementation of sublinear algorithms	1	relvant research	
Implementation and analysis of linear programming techniques	1	papersApplying the	
Algorithms for searching in big data	1	studied techniques	
Introduction and presentation of the project theme	1		
Bibliographic research: resources identification	1		
Bibliographic research: documentation analysis and synthesis	1		
Requirements gathering	1	-	
Implementing and testing a case study	1		
Analysis of the experimental results	1	1	
Redacting and presenting the final document	1		

press, 2022.
Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. *Mining of massive data sets*. Cambridge university press, 2020.

3. Feldman, Moran. Algorithms for Big Data. World Scientific, 2020.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade			
Course	Theoretical analysis and problem solving skills based on the acquired knowledge	Written exam	50%			
Laboratory	Based on the obtained results and the analysis and synthesis skills	Practical problem-solving skills	20%			
Project Based on the obtained results and the analysis and synthesis skills		Oral evaluation	30%			
Minimum standar	d of performance:					
• Laboratory ≥ 5						
 Project evaluation ≥ 5 						
• Final exam ≥ 5;						
Final grade compu	Final grade computation: 50% final exam + 20% laboratory + 30% project					

Date of filling in:	Responsible Course	Title, First name, Surname Prof.Dr.Ing. Potolea Rodica	Signature
		Conf. dr. ing. Ciprian Oprisa	

Applications Conf. dr. ing. Ciprian Oprisa

Conf.Dr.Ing. Lemnaru Camelia

Date of approval in the department 20.02.2024

Date of approval in the Faculty Council 22.02.2024

Head of department, Prof.dr.eng. Rodica Potolea

Dean, Prof.dr.eng. Mihaela Dinsoreanu