SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Master of Science
1.6	Program of study/Qualification	Artificial Intelligence and Vision
1.7	Form of education	Full time
1.8	Subject code	7.2

2. Data about the subject

2.1	Subject name				Languages and Type Systems				
2.2	Subject area				Computer Science and Information Technology				
2.2	Course responsible/lecturer				Prof.dr.eng. Eneia Nicolae	Prof.dr.eng. Eneia Nicolae Todoran – <u>Eneia.Todoran@cs.utcluj.ro</u>			
2.3	Teachers in charge of seminars				Prof.dr.eng. Eneia Nicolae Todoran – <u>Eneia.Todoran@cs.utcluj.ro</u>				
2.4 Year of study I 2.5 Semester 2			2	2.6 Assessment	E– e xam, C– c olloq., V- v erif.	E			
2.7 Subject		Forn	Formative category: DA – advanced, DS – speciality, DC – complementary						
category		Opti	onality: DI – imp	osed	, DO – optional (alternative	e), DF – optional (free choice)	DO		

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	1	3.3 Laborator	-	3.3 Proiect	-
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	14	3.6 Laborator	-	3.6 Proiect	-
3.7 Individual study:							•			
(a) Manual, lecture material and notes, bibliography							20			
(b) Supplementary study in the library, online and in the field								10		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								15		
(d) Tutoring								10		
(e) Exams and tests								3		
(f) Other activities								-		
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Programming Languages (undergraduate course)
4.2	Competence	Scientific, engineering and mathematical foundations

5. Requirements (where appropriate)

5.1 For the course		Interactive course, for the maximum grade a minimum of 70% course attendance is required	
5.2	For applications	For the maximum grade the student should attend at least 70% of the seminar hours	

6. Specific competences

Professional	C1 - Working with mathematical methods and models, advanced engineering and IT techniques
competences	and technologies
	C1.1 - Presentation of advanced theoretical and practical concepts and principles
	related to intelligent systems and artificial vision
	• C1.2 - The use of specific theories and tools (algorithms, schemes, models, protocols,
	etc.) to explain the structure and operation mode of the latest intelligent and artificial
	vision systems reported in the specialized scientific literature
	C1.3 - Use of models for different components of complex artificial vision and
	intelligent systems under partial specification conditions
	 C1.4 - Formal and comparative evaluation of the characteristics of intelligent and complex artificial vision systems
	C1.5 - Theoretical substantiation of the characteristics of complex intelligent and
	artificial vision systems, based on modern theoretical and practical trends
	C2 - Use of computing techniques in the fields of artificial intelligence and artificial vision and
	their applications
	C2.1 - Identification and description of structures and operation mode for intelligent
	and artificial vision components and systems
	C2.2 - Explaining the role, interactions and functional characteristics of the
	components of intelligent and artificial vision systems reported in the specialized scientific literature
	C2.3 - Development of original software and hardware components, of intelligent and
	artificial vision systems, using algorithms, design methods, protocols, programming
	languages, data structures, technologies
	C2.4 - Evaluation of functional and non-functional characteristics of intelligent and
	artificial vision systems, based on specific metrics
	C2.5 - Implementation of intelligent and artificial vision systems
Cross	N/A
competences	
1	

7. Discipline objectives (as results from the key competences gained)

		The main objective of this discipline is to provide specific knowledge and to
		prepare students for the use of formal and semantic models in the design and
7.4		verification of computing systems. The knowledge is presented in the context of
7.1	General objective	programming and specification languages and process calculi, with an emphasis
		on static type checking, dynamic semantics, performance modelling and formal
		verification of the properties of computing systems.
		To achieve these general objectives, students will:
		• Learn to specify and formally design computer languages and systems via their
		operational semantics and type system
		Learn to formally verify properties of languages and systems
		 State and prove properties of programs based on their semantics
7 2	Creating a big stives	• Learn techniques for designing and verifying the properties of languages and
7.2	Specific objectives	systems (induction, fixed point semantics, bisimulation)
		 Learn to apply advanced design principles and paradigms
		Study how semantic techniques allow solving complex problems in formal
		design, performance evaluation, formal verification
		• Learn to apply formal methods in the specification, development and
		verification of software systems

8. Contents

8.1. Lecture (svllabus)		Teaching	Notes			
	of hours	methods	Hotes			
Introduction and overview of the course	2					
Semantic styles, operational semantics	2					
Untyped Lambda Calculus (ULC): syntax, evaluation relation	2					
ULC: Nameless representation of terms (De Bruijn terms)	2					
Simply Typed Lambda Calculus (STLC): syntax and typing relation	2	Interactive				
STLC: properties of typing (progress and preservation theorems)	2	course,				
Simple extensions: records, variants, general recursion, lists	2	exposition,				
Semantic interpreter for STLC, Haskell implementation	2	examples, questions, discussions				
Introduction to Dependent Types (DT)	2					
Introduction to process algebras and bisimulation	2					
Bisimulation and algebraic semantics: concurrency and nondeterminism	2					
Introduction to CCS (Calculus of Communicating Systems)	2					
Bisimulation and algebraic semantics in CCS (1)	2					
Bisimulation and algebraic semantics in CCS (2)	2					
Bibliography			1			
1. B. Pierce, Types and Programming Languages, MIT Press, 2002.						
2. B. Pierce, Advanced Topics in Types and Programming Languages, MIT Press, 2005.						
3. B. Pierce et al, Software Foundations, https://softwarefoundations.cis.upenn.edu, 2023.						
4. R. Milner. Communicating and mobile systems: the pi-calculus, Cambridge	Univ. Press,	1999.				
5. D. Sangiorgi, Introduction to Bisimulation and Coinduction, Cambridge University Press, 2011.						

- 6. R. Harper, Practical Foundations for Programming Languages, Cambridge University Press, 2016.
- 7. Types and Programming Languages (lecture notes, adapted from 1), Technical University of Cluj-Napoca, https://ftp.utcluj.ro/pub/users/gc/LST/tpl-2020.pdf, 2020.
- 8. E.N. Todoran. Introducere in Semantica Limbajelor de Programare, Note de curs si seminar, Universitatea Tehnica din Cluj-Napoca, <u>http://users.utcluj.ro/~eneia/aplc-2016.pdf</u>, 2016.

8.2. Seminars/ Laboratory / Project	Number of hours	Teaching methods	Notes
Structured operational semantics	2		
Semantic design with transition systems	2		
Design and Haskell implementation of a semantic interpreter for STLC	2	-	
Functional programming with DT	2	-	
Algebraic laws for CCS in bisimulation semantics (1)	2	-	
Algebraic laws for CCS in bisimulation semantics (2)	2		

Bibliography

- 1. B. Pierce, Types and Programming Languages, MIT Press, 2002.
- 2. B. Pierce et al, Software Foundations, <u>https://softwarefoundations.cis.upenn.edu</u>, 2023.
- 3. E.M. Clarke et al, Handbook of Model Checking, Springer, 2018.
- 4. D. Sangiorgi, Introduction to Bisimulation and Coinduction, Cambridge University Press, 2011.
- 5. Types and Programing Languages (lecture notes, adapted from 1), Tehnical University of Cluj-Napoca, https://ftp.utcluj.ro/pub/users/gc/LST/tpl-2020.pdf, 2020.
- 6. PRISM probabilistic model checker <u>www.prismmodelchecker.org</u>

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This course introduces basic knowledge in the fields of Semantics, Type Systems and Formal Methods. The presentation is made in the context of programming and specifications languages and process calculi. The languages and systems under consideration are described mathematically using formal syntax and are endowed with formal (static and dynamic) semantics. From an engineering perspective, this discipline offers important knowledge for the development of computing systems that impose strict quality standards: reliability, operational safety, measurable performance, etc. Each student must elaborate a scientific paper (an essay or a technical report). For the elaboration of the paper students can choose from a wide variety of topics: advanced topics in types and programming languages, model checking, dependent types, session types, runtime verification, nature inspired models of computation (DNA computing, membrane computing), process calculi, etc. The content of the discipline is synchronized with the latest advances in the field, based on monographs, studies and courses taught at prestigious universities in Europe and the USA.

10. Evaluation

Activity type	10 1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the				
Activity type	10.1 Assessment enterna	10.2 Assessment methods	final grade				
	The ability to solve problems						
10.4 Course	specific to the field,		75%				
10.4 Course	attendance and activity		13/0				
	during the course hours						
	The ability to solve problems						
10.5 Seminars	specific to the field, Elaboration of a scientific paper		250/				
/Laboratory/Project	attendance and activity in	Seminar assignments	2370				
	seminar classes						
10.6 Minimum standard of performance							
Modeling and solving semantic design problems, by using the formal apparatus specific to the field (type systems,							
operational semantics, b	operational semantics, bisimulation)						

Date	of	fil	ling	in:
------	----	-----	------	-----

Lecturer Teachers in charge of application Title Surname Name

Signature

Prof.dr.eng. Eneia Nicolae Todoran

Prof.dr.eng. Eneia Nicolae Todoran

Date of approval in the department 20.02.2024

Head of department Prof.dr.ing. Rodica Potolea

Date of approval in the faculty council 22.02.2024

Dean Prof.dr.ing. Mihaela Dinsoreanu