SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master in Data Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	7.1

2. Data about the subject

2.1 Subject name			Machine Learning 2				
2.2 Course responsible /lecturer		Conf.D	Conf.Dr.Ing. Marginean Anca – Anca.Marginean@cs.utcluj.ro				
2.2 Course responsible/le	cluie	I	Conf.D	Conf.Dr.Ing. Lemnaru Camelia – Camelia.Lemnaru@cs.utcluj.ro			
2.3 Teachers in charge of	3 Teachers in charge of seminars/ Conf.Dr.Ing. Marginean Anca – Anca.Marginean@cs.utcluj.ro						
laboratory/ project			Conf.Dr.Ing. Lemnaru Camelia – Camelia.Lemnaru@cs.utcluj.ro				
2.4 Year of study	1	2.5 Sem	nester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E		
Formative ca		ative cat	tegory: DA – advanced, DS – speciality, DC – complementary		DA		
2.7 Subject category	Optio)ptionality: DI – imposed, DO – optional (alternative), DF – optional (free choice)			DOp		

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminars	-	Laboratory	1	Project	-
3.2 Number of hours per	12	ofwhich	Courso	20	Sominars		Laboratory	14	Project	
semester	42	or which.	Course	20	Seminars	-	Laboratory	14	FIOJECI	-
3.3 Individual study:										
(a) Manual, lecture materia	l and r	notes, bibl	iography							15
(b) Supplementary study in	the lik	orary, onlir	ne and in	the fi	eld					15
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								18		
(d) Tutoring								5		
(e) Exams and tests								5		
(f) Other activities:							-			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 58										
3.5 Total hours per semester (3.2+3.4) 100										
3.6 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Machine Learning 1
4.2 Competence	Linear algebra, programming, logics, basic statistics

5. Requirements (where appropriate)

5.1. For the course	white/black-board, projector, PC/laptop
5.2. For the applications	white/black-board, projector, PC/laptop

6. Specific competence

6.1 Professional competences	1. Working with advanced mathematical methods and models,
	engineering and computing specific techniques and technologies.
	2. Development of advanced techniques, methods and methodologies in
	the domains of software design, programming systems and
	environments and their applications .
	3. Innovative design of machine learning systems and related software
	and hardware using the specific tools.

	 Contextual integration and exploitation of dedicated information systems. Creative pooling of multidisciplinary knowledge in the field of computers and information technology for research, design, optimization, implementation and testing of theories, algorithms and original methods specific to artificial intelligence and computer vision systems.
6.2 Cross competences	 Proof of knowledge for the economic, ethical, legal and social context associated with the profession, for correct task identification, schedule of activities, responsible decisions, with the final goal the design, preparation and presentation of a scientific paper. Clear and concise description of professional activity flows, tasks and outcomes obtained by assuming the role of leader / project manager or as a member of a research team, as result of personal skills of domain specific information synthesis, global vision, communication skills with collaborators, ability of task stages identification. Exercising the skill of continuous self-education and demonstrating critical, innovative and research abilities

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Understanding basic concepts in deep learning, the main types of architectures, training considerations; understanding the basic elements of reinforcement learning
7.2 Specific objectives	Understanding and being able to develop and utilise the most important deep learning and reinforcement learning algorithms. Operate with known frameworks and software tools for deep learning.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes	
Introduction	2			
Mathematical review	2			
Deep Feedforward Networks	2			
Optimization and regularisation in Deep Learning	2			
Convolutional Neural Networks	2			
Recurrent Neural Networks	2			
Autoencoders	2	presentations,		
Generative Adversarial Neural Networks	2	discussions		
Foundation Models. Pre-training and fine-tuning.	2			
Interpretability of Deep Learning Models	2			
Deployment of Deep Learning Models (Quantization, distillation)	2			
Reinforcement Learning I	2			
Reinforcement Learning II				
Reinforcement Learning III	2			
Bibliography				
1. Deep Learning Book, by Ian Goodfellow, Yoshua Bengio an	d Aaron (Courville,		
https://www.deeplearningbook.org/				
2. Reinforcement Learning. An Introduction (2nd edition), R.S.	S. Sutton a	and A.G. Barto, MIT Pres	s, 2018	
3. Selected research papers				
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes	
Introduction to Pytorch and review of useful Python packages	2			
Implementing a FFN for image classification				
Implementing a CNN for image classification	2	presentations,		
Implementing an RNN for sequence tagging	2	laptop/PC		
Implementing GANs for data augmentation	2]		
Interpretability techniques, deployment aspects	2			

Reinforcement learning algorithms	2	
Bibliography		

1. Selected kaggle.com scripts (<u>https://www.kaggle.com/</u>)

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The contents of this course are in line with the curricula of top universities around the globe (see bibliography sections). Moreover, the contents of the course cover the most important conceptual and technical aspects needed to develop deep and reinforcement learning solutions at industry level).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade			
Course	The ability to solve problems specific to the domain. Course participation and involvement.	Final evaluation	50%			
Seminar	-	-	-			
Laboratory	The ability to implement and evaluate specific solutions for the proposed problems	Bi-weekly laboratory assessments, final assignment	50%			
Project	-	-	-			
Minimum standard of performance: Minimum <i>lab</i> grade: 5; Minimum final grade: 5						

Date of filling in:	Titulari Curs	Titlu Prenume NUME Conf.Dr.Ing. Marginean Anca Conf.Dr.Ing. Lemnaru Camelia	Semnătura
	Aplicații	Conf.Dr.Ing. Marginean Anca Conf.Dr.Ing. Lemnaru Camelia	

Date of approval in the department 20.02.2024

Head of department Prof.dr.ing. Rodica Potolea Date of approval in the Faculty Council 22.02.2024

Dean Prof.dr.ing. Mihaela Dinsoreanu