SYLLABUS

1. Data about the program of study

-		
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Master of Science
1.6	Program of study/Qualification	Data Science
1.7	Form of education	Full time
1.8	Subject code	5.00

2. Data about the subject

2.1	Subject name				Mathematical Models for Machine Learning		
2.2	Subject area				Mathematics		
2.2	Course responsible/lecturer				Prof. Dr Ioan Radu Peter		
2.3	Teachers in charge of seminars				Prof. Dr Ioan Radu Peter		
2.4 Y	2.4 Year of study 1 2.5 Semester 1			1	2.6 Assessment		E
275	2.7 Subject category Formative category: DA – ad Optionality: DI – imposed, D			DA – a	dvanced, DS – specialit	y, DC – complementary	DS
2.7 5				osed, D	0 – optional (alternativ	ve), DF – optional (free choice)	DFac

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar	1	3.3 Laborator	-	.3 oiect	
3.4 Total hours in the curriculum	28	of which	3.5 Course	14	3.6 Seminar	14	3.6 Laborator	-	.6 oiect	
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography						2	5			
(b) Supplementary study in the library, online and in the field							2	5		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						2	0			
(d) Tutoring										
(e) Exams and tests							2	2		
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 72										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Master of PhD student
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	Computer, projector
5.2	For the applications	70% presence for entrance to the fnal exam

6. Specific competences

6.1 Professional	Understanding mathematical models in machine learning, deep learning.
competences	

6.2 Cross competences	The ability to apply mathematics for understanding major algorithms, the
	ability to choose algorithms in problems.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Understanding mathematical models in machine learning, deep learning.
7.2	Specific objectives	The ability to apply mathematics for understanding major algorithms, the
/.2	specific objectives	ability to choose algorithms in problems.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Introduction.	2		
Norms. Vector normalizations, meaning.	2		
Generalized Inverse I	2		
Generalized Inverse II	2		
Factorizations (QR, LD etc)	2		
Singular Value Decomposition.	2		
Sparse systems.	2		
Eigenvalues, eigenvectors. Gram Matrices.	2		
Rayleigh quotients. Applications in Machine Learning.	2		
Optimization methods related to Machine Learning.	2		
Classical algorithms using matrix optimization. Principal	2		
directions, PCA.			
Constrained optimization. Karush-Kuhn-Tucker methods.	2		
Final discussion. Approach methods.	2		
Bibliography			
Papers related to topics, which have online access. Papers in jo	urnals, tutorials,	Lecture notes.	
8.2. Seminars /Laboratory/Project	Number	Teaching methods	Notos
8.2. Seminars / Laboratory/Project	of hours	reaching methods	Notes
Vector normalization. Generalized inverse I.	2		
Generalized inverse II, factorizations.	2		
Eigenvectors, eigenvalues.	2		
Rayleigh quotients. Applications in Machine Learning.	4		
Constrained optimization. Karush-Kuhn-Tucker methods.	2		
Final discussion. Approach methods.	2		
Bibliography Papers in journals, tutorials, Lecture notes.			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Understanding mathematical models in Machine Learning, Deep learning is a cornerstone for efficient design of algorithms.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the
---------------	--------------------------	-------------------------	--------------------

			final grade			
	Understanding the					
10.4 Course	teorethical notions, their	Written exam.	75%			
	relations with algorithms.					
	Understanding "hidden"					
10.5 Seminars	mathematical models in	Seminar grade.	25%			
	different algorithms.					
10.6 Minimum standard of performance						
Ability to model/presen	Ability to model/present topics and working with them.					

Date of filling in:		Title Surname Name		Signature
	Course	Prof. dr. Ioan Radu Peter		
	Applications	Prof. dr. Ioan Radu Peter		
Date of approval in t	the department		Head of department	
20.02.2024			Prof.dr.ing. Rodica Potolea	

Date of approval in the Faculty Council 22.02.2024

Dean Prof.dr.ing. Mihaela Dinsoreanu