SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master in Data Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	4

2. Data about the subject

2.1 Subject name			Machine Learning 1			
2.2 Course responsible/le	cture	r	Conf.Dr.Ing. Lemnaru Camelia – Camelia.Lemnaru@cs.utcluj.ro			
2.3 Teachers in charge of	semir	nars/	Conf.Dr.Ing. Brehar Raluca – Raluca.Brehar@cs.utcluj.ro			
laboratory/ project			Conf.Dr.Ing. Giosan Ion-Augustin – Ion.GIOSAN@cs.utcluj.ro			
2.4 Year of study	1	2.5 Sem	ester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E	
2.7 Subject category Formative cat Optionality: D		egory: DA – advanced, DS – speciality, DC – complementary		DS		
		onality: D	ty: DI – imposed, DO – optional (alternative), DF – optional (free choice)		DI	

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminars	-	Laboratory	1	Project	-
3.2 Number of hours per semester	42	of which:	Course	28	Seminars	-	Laboratory	14	Project	-
3.3 Individual study:										
(a) Manual, lecture materia	l and ı	notes, bibl	iography							15
(b) Supplementary study in	the lik	orary, onlir	ne and in	the f	eld					15
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays					18					
(d) Tutoring						5				
(e) Exams and tests						5				
(f) Other activities:						-				
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 58										
3.5 Total hours per semester (3.2+3.4) 100										
3.6 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1 Curriculum	
4.2 Competence	Linear algebra, programming, logics, basic statistics

5. Requirements (where appropriate)

5.1. For the course	white/black-board, projector, PC/laptop
5.2. For the applications	white/black-board, projector, PC/laptop

6. Specific competence

6.1 Professional competences	1. Working with advanced mathematical methods and models,
	engineering and computing specific techniques and technologies.
	2. Development of advanced techniques, methods and methodologies
	in the domains of software design, programming systems and
	environments and their applications .
	3. Innovative design of machine learning systems and related software
	and hardware using the specific tools.
	4. Contextual integration and exploitation of dedicated information

	 systems. 5. Creative pooling of multidisciplinary knowledge in the field of computers and information technology for research, design, optimization, implementation and testing of theories, algorithms and original methods specific to artificial intelligence and computer vision systems.
6.2 Cross competences	 Proof of knowledge for the economic, ethical, legal and social context associated with the profession, for correct task identification, schedule of activities, responsible decisions, with the final goal the design, preparation and presentation of a scientific paper.
	 Clear and concise description of professional activity flows, tasks and outcomes obtained by assuming the role of leader / project manager or as a member of a research team, as result of personal skills of domain specific information synthesis, global vision, communication skills with collaborators, ability of task stages identification. Exercising the skill of continuous self-education and demonstrating
1	critical, innovative and research abilities

7. Discipline objective (as results from the *key competences gained*)

7.1 General objective	Understanding the process of learning from data, the pipeline steps and the best known techniques associated with each step	
7.2 Specific objectives	Understanding and being able to develop and utilise the most important learning algorithms and data pre-processing techniques for data analysis.	
	Operate with known frameworks and software tools for data analysis.	

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction. (Mathematical review ?)	2		
Learning theory 1 (learning problem, linear model example, error/noise)	2		
Learning theory 2 (training/testing, generalisation, bias/variance)	2		
Linear Regression	2		
Polynomial Regression (overfitting, regularisation, validation)	2		
Decision trees.	2		
Support Vector Machines. Kernel Methods	2	presentations,	
Neural Networks	2	uiscussions	
Ensemble learning, cost-sensitive learning	2		
Clustering	2		
Methods for dealing with noisy/incomplete data	2		
Feature selection and transformation	2		
ML Applications	2		
Fairness, algorithmic bias, explainability, privacy	2		

Bibliography

 A-M. S. Yaser, M-I. Malik and L. Hsuan-Tien, "Learning from Data", 2012 (selection of e-chapters available at <u>https://amlbook.com/eChapters.html</u>)

2. Caltech C156 - Learning From Data page: <u>https://work.caltech.edu/telecourse.html</u>

3. Stanford CS229 - Machine Learning Lecture Notes by Andrew Ng, available at:

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction to Python (numpy, pandas, matplotlib, seaborn)	2		
Training and evaluation of a simple model. Evaluation metrics	2	presentations,	
Building an interpretable model for medical diagnosis	2	ιαμισμέρος	

Building an SVM and an NN model for handwritten digit recognition	2
Ensembling ML models for boosting performance	2
Data preparation pipeline	2
Clustering algorithms	2
Bibliography	
1. Selected kaggle.com scripts (<u>https://www.kaggle.com/</u>)	

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The contents of this course are in line with the curricula of top universities around the globe (see bibliography sections). Moreover, the contents of the course cover the most important conceptual and technical aspects needed to develop machine learning solutions at industry level).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	The ability to solve problems specific to the domain. Course participation and involvement.	Final evaluation	50%		
Seminar	-	-	-		
Laboratory	The ability to implement and evaluate specific solutions for the proposed problems	Bi-weekly laboratory assessments, final assignment	50%		
Project	-	-	-		
Minimum standard of performance: Minimum <i>lab</i> grade: 5; Minimum final grade: 5					

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Curs	Conf.Dr.Ing. Lemnaru Camelia	
	Aplicații	Conf.Dr.Ing. Brehar Raluca	
		Conf.Dr.Ing. Giosan Ion-Augustin	

Date of approval in the department 20.02.2024

Head of department Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council 22.02.2024

Dean Prof.dr.ing. Mihaela Dinsoreanu