SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Master of Science
1.6	Program of study/Qualification	Artificial Intelligence and Vision
1.7	Form of education	Full time
1.8	Subject code	4

2. Data about the subject

2.1	Subject name				Deep Learning Based Computer Vision			
2.2	Subject area				Artificial Intelligence			
2.2	2 Course responsible/lecturer				Prof. dr. eng. Sergiu N	Prof. dr. eng. Sergiu Nedevschi, <u>Sergiu.Nedevschi@cs.utcluj.ro</u>		
2.3	3 Teachers in charge of seminars				Prof. dr. eng. Sergiu Nedevschi, Sergiu.Nedevschi@cs.utcluj.ro			
2.4 Year of study 1 2.5 Semester 1			1	2.6 Assessment	E– e xam, C– c olloq., V- v erif.	E		
2 7 9	2.7 Subject category		native category: DA – advanced, DS – speciality, DC – complementary			y, DC – complementary	DS	
2.7 3			onality: DI – imp	osed, I	00 – optional (alternative), DF – optional (free choice)		Di	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	1	3.3 Laborator	-	3.3 Proiect	-
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	14	3.6 Laborator	-	3.6 Proiect	-
3.7 Individual study:		•			•					
(a) Manual, lecture material a	and not	es, bibliogr	aphy							23
(b) Supplementary study in the library, online and in the field							23			
(c) Preparation for seminars/	laborat	ory works,	homewo	rk, re	ports, port	folios	s, essays			10
(d) Tutoring							-			
(e) Exams and tests						2				
(f) Other activities						-				
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100					100					
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Image Processing	
12	Compotonco	Operation with mathematical methods and models, techniques and	
4.2 Competence		technologies specific to the field of image processing	

5. Requirements (where appropriate)

5.1	For the course	Blackboard, video projector, screen, computer
5.2	For the seminar / laboratory / project	Computers, equipment and specific software

6. Specific competences

6.1 Professional	C1 - Operation with mathematical methods and models, techniques and advanced specific
competences	engineering and IT technologies
	 C1.1 - Demonstration of advanced theoretical and practical concepts and principles
	related to intelligent systems and artificial vision
	 C1.2 - The use of specific theories and tools (algorithms, schemes, models, protocols,
	etc.) to explain the structure and mode of operation of the latest intelligent and
	artificial vision systems reported in the specialized scientific literature
	 C1.3 - The use of models for different components of complex intelligent and artificial
	vision systems under conditions of partial specification
	 C1.4 - Formal and comparative evaluation of the characteristics of complex intelligent and artificial vision systems
	and artificial vision systems
	C1.5 - Theoretical substantiation of the characteristics of designed complex intelligent and artificial vision sustance based on modern theoretical and martinel transfer
	and artificial vision systems, based on modern theoretical and practical trends
	C2 - The use of computing techniques in the fields of artificial intelligence and vision and their
	applications.
	• C2.1 - Identifying and describing the structure and mode of operation of intelligent and
	artificial vision components and systems
	C2.2 - Explanation of the role, interactions and functional characteristics of the
	components of the latest intelligent and artificial vision systems reported in the
	specialized scientific literature
	C2.3 - Building original components, hardware and software, of intelligent and artificial
	vision systems, using algorithms, design methods, protocols, programming languages,
	data structures, technologies
	C2.4 - Evaluation of the functional and non-functional characteristics of intelligent and
	artificial vision systems, based on specific metrics
	 C2.5 - Implementation of intelligent and artificial vision systems
	C3 - Specification, analysis, modeling, design, verification, testing and validation of advanced
	artificial vision systems using field-specific tools
	 C3.1 - Advanced knowledge, understanding and use of artificial vision concepts,
	paradigms and models
	 C3.2 - Advanced knowledge, understanding and nuanced use of artificial vision
	algorithms
	C3.3 - Development and implementation of original solutions for artificial vision
	applications
	C4 - Contextual integration and integrity of intelligent and artificial vision systems
	C4.1 - Demonstration of knowledge and understanding of the specific interoperability
	elements of intelligent systems and artificial vision
	C4.2 - Using interdisciplinary knowledge to adapt intelligent systems and artificial
	vision in relation to the dynamic requirements of the application field
	• C4.3 - The combined use of classical and original principles and methods to ensure the
	security, encryption, safety and ease of use of intelligent and artificial vision systems
	C4.4 - Use of quality, safety and security standards in information processing
	C4.5 - Carrying out interdisciplinary projects, including problem identification and
	analysis, development of design specifications, development, functional testing and
	evaluation of specific quality and performance criteria
6.2 Cross	NA
competences	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	The development of skills and abilities for the development of artificial vision systems in the field of intelligence and artificial vision, computers and information technology
7.2	Specific objectives	 Assimilation of knowledge and skills regarding: - understanding and using deep learning based artificial vision concepts, paradigms and models - the nuanced understanding and use of artificial vision algorithms - studying, designing, implementing and evaluating artificial vision application modules - image processing and pattern recognition methods -3d reconstruction and processing methods

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Introduction	2		
Machine Learning Basics	2		
Neural Networks: Compute Graphs, Backpropagation, MLP,	2	-	
Output and Loss, Activation, Pre-processing,			
Neural Networks: Optimization, Regularization, Training	2		
Convolutional Neural Networks and Architectures	2	Systematic	
Recurrent Neural Networks	2	exposure,	
Attention and Transformers	2	student	
Object Detection and Semantic Segmentation	2	involvement in presentations	
Transformers Based Solutions	2	and debates	
Elements of Projective Geometry	2		
3D Reconstruction	2	-	
Structure from Motion and Epipolar Geometry	2		
Similarity Measures and Point-feature Extraction	2		
Detection and Segmentation in the 3D Space	2		
 Bibliography 1. Convolutional Neural Networks for Visual Recognition, http://cs 2. David Forsyth, Jean Ponce "Computer Vision A Modern Approace 3. IEEE Transactions on Pattern Analyses and Machine Intelligence 4. IEEE Transactions on Image Processing 5. IEEE Transactions on Intelligent Transportation Systems 6. CVPR, ECCV and ICCV papers 	h", Prentice H		
	Number		
8.2. Seminars /Laboratory/Project	of hours	Teaching methods	Notes
Machine Learning Topics-1	2		
Machine Learning Topics-2	2		
Deep Learning Based Computer Vision	2	Case study,	
Detection, classification, semantic segmentation from images	2	Presentation,	
and image sequences		Debate	
Stereovision and depth from monocular images			
Optical flow, motion flow	2		

Detection, classification, semantic segmentation of 3D Point	2						
Clouds							
Bibliography							
1. Convolutional Neural Networks for Visual Recognition, http://cs231n.stanford.edu/							
2. David Forsyth, Jean Ponce "Computer Vision A Modern Approach", Prentice Hall, USA, 2002							
3. IEEE Transactions on Pattern Analyses and Machine Intelligence							
4. IEEE Transactions on Image Processing							
5. IEEE Transactions on Intelligent Transportation Systems							
6. CVPR, ECCV and ICCV papers							

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is carried out through periodic meetings with representatives of the economic environment

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	Exam	Written examination	50%			
10.5 Applications (Seminars /Laboratory/Project)	Individual presentation of a subject in the field	Oral examination	50%			
10.6 Minimum standard of performance: Both, Written examination and Oral examination, marks are bigger or equal with 5						

Date of filling in:		Title Surname Name	Signature
	Lecturer	Prof. dr. eng. Sergiu Nedevschi	
	Teachers in charge of application	Prof. dr. eng. Sergiu Nedevschi	

Date of approval in the department 20.02.2024

Head of department Prof.dr.ing. Rodica Potolea

Date of approval in the faculty council 22.02.2024

Dean Prof.dr.ing. Mihaela Dinsoreanu