
1/5

SYLLABUS

1. Data about the program of study

1.1 Institution Technical University of Cluj-Napoca

1.2 Faculty Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Master of Science

1.6 Program of study / Qualification Cybersecurity Engineering / Master

1.7 Form of education Full time

1.8 Subject code 4.2

2. Data about the subject

2.1 Subject name Programming security mechanisms on the x86-64 architecture

2.2 Course responsible/lecturer Prof. Dr. Eng. Gheorghe Sebestyen - gheorghe.sebestyen@cs.utcluj.ro

2.3 Teachers in charge of seminars Prof. Dr. Eng. Gheorghe Sebestyen - gheorghe.sebestyen@cs.utcluj.ro

2.4 Year of study I 2.5 Semester 1
2.6 Type of assessment (E - exam, C - colloquium, V -

verification)
E

2.7 Subject category
Formative category: DA – advanced, DS – speciality, DC – complementary DA

Optionality: DI – imposed, DO – optional (alternative), DF – optional (free choice) DO

3. Estimated total time

3.1 Number of hours per week 4 of which
3.2

Course
2

3.3
Seminar

0
3.3

Laboratory
2

3.3
Project

0

3.4 Total hours in the curriculum 56 of which
3.5

Course
28

3.6
Seminar

0
3.6

Laboratory
28

3.6
Project

0

3.7 Individual study:

(a) Manual, lecture material and notes, bibliography 20

(b) Supplementary study in the library, online and in the field 18

(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 54

(d) Tutoring 0

(e) Exams and tests 2

(f) Other activities 0

3.8 Total hours of individual study (sum (3.7(a)…3.7(f))) 94

3.9 Total hours per semester (3.4+3.8) 150

3.10 Number of credit points 6

4. Pre-requisites (where appropriate)

4.1 Curriculum Assembly Language Programming, Operating Systems

4.2 Competence Computer Architecture

5. Requirements (where appropriate)

5.1 For the course blackboard, beamer, computers

5.2 For the applications blackboard, beamer, computers

6. Specific competences

mailto:gheorghe.sebestyen@cs.utcluj.ro
mailto:gheorghe.sebestyen@cs.utcluj.ro

2/5

Professional

competences

C1. Identify and understand the security issues specific to the different contexts of computing
system usage. Appropriately apply the basic elements of security management and methods
of evaluation and management of information security risks.

 C1.1. Knowledge of advanced theoretical and practical terminology, concepts, and
principles specific to cybersecurity field. Knowledge of concepts about cybersecurity risk
evaluation, and management.

 C1.3. Capability to identify and model new types of cybersecurity risks affecting end users,
computing systems, and software applications, and identify and evaluate possible solutions
against such risks.

 C1.4. Capability to identify and assess the limitations of existing cybersecurity solutions and
their security risks, relative to well-known classifications.

C4. Design and develop highly secure software, security solutions and tools.

 C4.1. Knowledge of basic concepts and principles of secure software development and
evaluation. Knowledge of common types of security software and tools. Knowledge of
different operating system architectures, hardware and software infrastructures and
frameworks needed to develop effective security solutions.

 C4.2. Be able to identify new situations and scenarios when it is needed to develop a new
cybersecurity solution or use an existing one. Be able to analyze proposed cybersecurity
solutions and compare them with existing ones.

 C4.3. Capability to develop complex secure software, complying with recommended good
practices of built-in security and secure coding. Capability to develop software tools used
for cybersecurity pentesting and assessment.

 C4.5. Capability to develop software modules and tools that could provide a high degree of
cybersecurity. Capability to propose new methods to assess the cybersecurity of computing
systems and devices and ways to improve it.

C5. Develop rigorous and efficient security solutions to complex real-life problems and
situations. Be able to use security mathematical tools and models, engineering approaches
and technologies specific and appropriate for the information and computing system security
field.

 C5.1. Knowledge of complex relationship between cybersecurity and real-life aspects.
Knowledge of mathematical theory some cybersecurity mechanisms and solutions are
based on.

 C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and
tools used in real-life situations, their residual cybersecurity risks, and their criticality.
Capability to identify and research new cybersecurity fields and methods that could be
used to reduce the limitations of existing cybersecurity solutions.

 C5.5. Capability to run research activities and projects aimed to derive applicable
cybersecurity solutions, implement their hardware and/or software prototype.

Cross

competences

N/A

7. Discipline objectives (as results from the key competences gained)

7.1 General objective

Deeper understanding of the x86-64 architecture from the security perspective,

understanding the low-level mechanisms of an operating system, its components as

well as the basic elements necessary for its development.

7.2 Specific objectives

1. Understanding the x86-64 architecture at the structural and functional level.

2. Understanding the different security mechanisms offered by the x86-64

architecture as well as how to use them within an operating system.

3. Knowing the different low-level components of an operating system;

understanding their role and functionality as well as the relationships between

them.

4. Knowledge of the techniques of designing and implementing the different

components of an operating system.

5. Acquiring experience of programming some hardware components at the level

of hardware-software interface.

3/5

8. Contents

8.1. Lecture (syllabus)
Number of

hours

Teaching

methods
Notes

Review the Intel x86 architecture, working modes, elements of

the protected mode

2

Blackboard

illustrations and

explanations,

beamer

presentations,

discussions, short

challenges e

Intel x86 architecture (continued), "long" mode, switching to

protected mode and "long" mode, pagination in "Long" mode,

launching in execution of an x86 processor (boot loader)

2

Assembly language for the x86 processors, execution of

programs in user and kernel mode

2

Interrupts and exceptions 2

The PCI and PCIe Bus 2

Implementation of the synchronizing mechanisms 2

Processes and Threads 2

Management of the Heap memory 2

The hard-disk interface, the SATA protocol 2

File systems (FAT, NTFS) 2

Windows drivers 2

Optimization of the multimedia data processing through MMX,

SSE, AVX

2

Virtualization techniques for Intel processors (Intel-VT, VMX,

SGX)

2

Review of the course 2

Bibliography

1) Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 1-3 (Intel – 2014 – electronic)
2) Operating System Concepts (Silberschatz, Abraham – 2012 – Wiley) (9th ed)
3) Optimizing subroutines in assembly language: An optimization guide for x86 platforms (Fog, Agner – 2013 –

electronic, http://www.agner.org/optimize/)
4) Windows Operating System Internals Curriculum Resource Kit (CRK) (Microsoft – 2006 – electronic, MSDNAA)

5) Presentations (slides) of the course (https://users.utcluj.ro/~sebestyen/cursuri_lab.htm)

6) Development sites for operating system components(e.g. http://wiki.osdev.org/).

8.2. Laboratory
Number

of hours
Teaching methods Notes

Introduction to the OS starting template used: installation,
compilation, execution and testing

2

Brief reviews,

blackboard

illustrations and

explanations,

tutorials,

roadmaps, short

live demos and

guidance of code

development,

discussions,

homework

Transitioning to long mode. Configuring CPU control structures,

memory spaces and paging for 4 level paging

4

IDT configuration for exception and interrupt handling.

Implementing assembly stubs and C ISR routines for handling

exceptions and interrupts. Dumping the trap frames for

debugging.

2

PIC programming for interrupt handling. Programming the PIT

and keyboard and handling their interrupts.

2

Implementing interactive I/O e.g., command interpreter 2

Programming ATA hard drive for PIO access 2

Memory Management: physical, virtual and heap memory

allocators

4

Intel SMP 1.4 trampoline for booting AP processors 2

http://wiki.osdev.org/

4/5

Implementing a synchronization primitive (spinlock). Updating

the code to use the primitive: display access, doubly link list

access, etc.

4

SMP threads, context switching, scheduling. Mutex. FPU/SEE

context saving.

4

Bibliography

1) Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 1-4 (Intel – 2022 – electronic)
2) Operating System Concepts (Silberschatz, Abraham – 2012 – Wiley) (9th ed)
3) Optimizing subroutines in assembly language: An optimization guide for x86 platforms (Fog, Agner – 2013 –

electronic, http://www.agner.org/optimize/)
4) Windows Operating System Internals Curriculum Resource Kit (CRK) (Microsoft – 2006 – electronic, MSDNAA)
5) Several sites dedicated to OS development (e.g. http://wiki.osdev.org/).
6) Several specifications regarding HW interfaces or devices (e.g. ATA, RTC, PIC, ..)

9. Bridging course contents with the expectations of the representatives of the community, professional

associations and employers in the field

This course was designed as a structure and content based on discussions with representatives of companies (e.g.

BitDefender) directly involved in the development of security solutions. This course covers a series of knowledge

that is necessary in developing methods to secure systems at a level close to the physical machine.

10. Evaluation

Activity type 10.1 Assessment criteria 10.2 Assessment methods
10.3 Weight in the

final grade

 Course

Ability to solve domain-

specific problems Presence,

(inter)activity during class

hours

Written exam, including online quiz
tests (e.g. on Moodle platform) and
presentation(s) of different
subjects / paper in the course’s
field during semester time.

70%

Laboratory

Ability to solve domain-

specific problems Presence,

(inter)activity during class

hours

Evaluate lab activity.
Evaluate lab assignments
(homework).
Evaluate solutions of problems
given in a final lab exam.

30%

10.6 Minimum standard of performance

Minimum standard of performance
Lecture. Attending minimum 50% of lecture classes, to be allowed to take the final examination. Knowledge of the
main protection mechanisms offered by the x86-64 architecture. Knowledge of the main principles of design of
operating systems. Minimum final grade must be 5 for the exam to be considered passed.
Lab. Attending all lab classes (one lab could be recovered during the semester, and one more during re-

examination sessions). The ability to use the acquired knowledge to develop components within an operating

system. This kind of assessment could happen in relation to assignments given during semester or subjects given

during the final lab evaluation.

Minimum laboratory grade 5.

Minimum exam grade 5.

Final grade=Note exams*0.7+Laboratory grade*0.3

Promotion criterion: minimum 5 at the final grade

http://www.agner.org/optimize/
http://wiki.osdev.org/

5/5

Date of filling in Title Surname Name Signature
 Lecturer Prof. dr. eng. Gheorghe Sebestyen

 Teachers in
charge of
application

Prof. Dr. Eng. Gheorghe Sebestyen

Date of approval in the department
20.02.2024

Head of department
Prof.dr.ing. Rodica Potolea

Date of approval in the faculty
22.02.2024

Dean
Prof.dr.ing. Mihaela Dinsoreanu

