SYLLABUS

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Master of Science
1.6	Program of study / Qualification	Cybersecurity Engineering / Master
1.7	Form of education	Full time
1.8	Subject code	4.2

2. Data about the subject

2.1	Subject name	Subject name			Programming security mechanisms on the x86-64 architecture		
2.2	2.2 Course responsible/lecturer			Prof. Dr. Eng. Gheorghe Sebestyen - gheorghe.sebestyen@cs.utcluj.ro			
2.3	Teachers in cha	rge of	seminars		Prof. Dr. Eng. Gheorghe Sebestyen - gheorghe.sebestyen@c	<u>s.utcluj.ro</u>	
2.4 Y	ear of study	I	2.5 Semester	11	2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E	
279	Subject category	Form	ative category:	D	A – advanced, DS – speciality, DC – complementary	DA	
2.7 5	Subject category	Optic	onality: DI – imp	os	ed, DO – optional (alternative), DF – optional (free choice)	DO	

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	2	3.3 Proje	0
3.4 Total hours in the curriculum	56	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	28	3.6 Proje	0
3.7 Individual study:										
(a) Manual, lecture material a	ind not	es, bibliogr	aphy							20
(b) Supplementary study in th	e libra	ry, online a	nd in the	field						18
(c) Preparation for seminars/	aborat	ory works,	homewo	rk, re	ports, port	folios	s, essays			54
(d) Tutoring										0
(e) Exams and tests										2
(f) Other activities										0
3.8 Total hours of individual study (s	sum (3.	7(a)3.7(f)))		94					
3.9 Total hours per semester (3.4+3	.8)				150					
3.10 Number of credit points					6					

4. Pre-requisites (where appropriate)

4.1	Curriculum	Assembly Language Programming, Operating Systems
4.2	Competence	Computer Architecture

5. Requirements (where appropriate)

5.1	For the course	blackboard, beamer, computers
5.2	For the applications	blackboard, beamer, computers

6. Specific competences

 competences system usage. Appropriately apply the basic elements of security management and methods of evaluation and management of information security risks. C1.1. Knowledge of advanced theoretical and practical terminology, concepts, and principles specific to cybersecurity field. Knowledge of concepts about cybersecurity risk evaluation, and management. C1.3. Capability to identify and model new types of cybersecurity risks affecting end users, computing systems, and software applications, and identify and evaluate possible solutions against such risks. C1.4. Capability to identify and assess the limitations of existing cybersecurity solutions and their security risks, relative to well-known classifications. C4.2. Beaple to basic concepts and principles of secure software development and evaluation. Knowledge of common types of security software and tools. Knowledge of different operating system architectures, hardware and software infrastructures and frameworks needed to develop effective security solutions. C4.2. Be able to identify new situations and scenarios when it is needed to develop a new cybersecurity polution or use an existing one. Be able to analyze proposed cybersecurity solutions and compare them with existing ones. C4.3. Capability to develop complex secure software, complying with recommended good practices of built-in security and secure coding. Capability to develop software tools used for cybersecurity capability to propose new methods to assess the cybersecurity of computing systems and devices and ways to improve it. C5.2. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity solutions are based	Professional	C1. Identify and understand the security issues specific to the different contexts of computing
 of evaluation and management of information security risks. C1.1. Knowledge of advanced theoretical and practical terminology, concepts, and principles specific to cybersecurity field. Knowledge of concepts about cybersecurity risk evaluation, and management. C1.3. Capability to identify and model new types of cybersecurity risk affecting end users, computing systems, and software applications, and identify and evaluate possible solutions against such risks. C1.4. Capability to identify and assess the limitations of existing cybersecurity solutions and their security risks, relative to well-known classifications. C3. Design and develop highly secure software, security solutions and tools. C4.1. Knowledge of basic concepts and principles of secure software development and evaluation. Knowledge of common types of security software and tools. Knowledge of different operating system architectures, hardware and software infrastructures and frameworks needed to develop effective security solutions. C4.2. Be able to identify new situations and scenarios when it is needed to develop a new cybersecurity solution or use an existing one. Be able to analyze proposed cybersecurity solutions and compare them with existing ones. C4.3. Capability to develop complex secure software, complying with recommended good practices of built-in security and assessment. C4.5. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approachs and technologies specific and appropriate for the information and computing system security field. C4.3. Capability to identify and assess limitations of existing cybersecurity solutions are based on. C5.1. Knowledge of complex relationship bet		
 principles specific to cybersecurity field. Knowledge of concepts about cybersecurity risk evaluation, and management. C1.3. Capability to identify and model new types of cybersecurity risks affecting end users, computing systems, and software applications, and identify and evaluate possible solutions against such risks. C1.4. Capability to identify and assess the limitations of existing cybersecurity solutions and their security risks, relative to well-known classifications. C4.1. Knowledge of basic concepts and principles of secure software development and evaluation. Knowledge of common types of security solutions and tools. C4.1. Knowledge of basic concepts and principles of secure software development and evaluation. Knowledge of common types of security solutions. C4.2. Be able to identify new situations and scenarios when it is needed to develop a new cybersecurity solution or use an existing one. Be able to analyze proposed cybersecurity solutions and compare them with existing ones. C4.3. Capability to develop complex secure coding. Capability to develop software tools used for cybersecurity pentesting and assessment. C4.5. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to propose new methods to assess the cybersecurity of computing system sand devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity solutions and solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity	competences	
 principles specific to cybersecurity field. Knowledge of concepts about cybersecurity risk evaluation, and management. C1.3. Capability to identify and model new types of cybersecurity risks affecting end users, computing systems, and software applications, and identify and evaluate possible solutions against such risks. C1.4. Capability to identify and assess the limitations of existing cybersecurity solutions and their security risks, relative to well-known classifications. C4.1. Knowledge of basic concepts and principles of secure software development and evaluation. Knowledge of common types of security solutions and tools. C4.1. Knowledge of basic concepts and principles of secure software development and evaluation. Knowledge of common types of security solutions. C4.2. Be able to identify new situations and scenarios when it is needed to develop a new cybersecurity solution or use an existing one. Be able to analyze proposed cybersecurity solutions and compare them with existing ones. C4.3. Capability to develop complex secure coding. Capability to develop software tools used for cybersecurity pentesting and assessment. C4.5. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to propose new methods to assess the cybersecurity of computing system sand devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity solutions and solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity		-
 evaluation, and management. C1.3. Capability to identify and model new types of cybersecurity risks affecting end users, computing systems, and software applications, and identify and evaluate possible solutions against such risks. C1.4. Capability to identify and assess the limitations of existing cybersecurity solutions and their security risks, relative to well-known classifications. C4. Design and develop highly secure software, security solutions and tools. C4.1. Knowledge of basic concepts and principles of secure software development and evaluation. Knowledge of common types of security software and tools. Knowledge of different operating system architectures, hardware and software infrastructures and frameworks needed to develop effective security solutions. C4.2. Be able to identify new situations and scenarios when it is needed to develop a new cybersecurity solution or use an existing one. Be able to analyze proposed cybersecurity solutions and compare them with existing ones. C4.3. Capability to develop complex secure software, complying with recommended good practices of built-in security and secure coding. Capability to develop software tools used for cybersecurity pretesting and assessment. C4.5. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to propose new methods to assess the cybersecurity of computing systems and devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions ar		
 C1.3. Capability to identify and model new types of cybersecurity risks affecting end users, computing systems, and software applications, and identify and evaluate possible solutions against such risk. C1.4. Capability to identify and assess the limitations of existing cybersecurity solutions and their security risks, relative to well-known classifications. C4.1. Capability to identify and assess the limitations of existing cybersecurity solutions and their security risks, relative to well-known classifications. C4.1. Knowledge of basic concepts and principles of secure software development and evaluation. Knowledge of common types of security solutions and tools. C4.2. Be able to identify new situations and scenarios when it is needed to develop a new cybersecurity solution or use an existing one. Be able to analyze proposed cybersecurity solutions and compare them with existing ones. C4.3. Capability to develop complex secure software, complying with recommended good practices of built-in security and secure coding. Capability to develop software tools used for cybersecurity pentesting and assessment. C4.5. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to propose new methods to assess the cybersecurity of computing systems and devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to ident		
 C1.4. Capability to identify and assess the limitations of existing cybersecurity solutions and their security risks, relative to well-known classifications. C4. Design and develop highly secure software, security solutions and tools. C4.1. Knowledge of basic concepts and principles of secure software development and evaluation. Knowledge of common types of security solutions. C4.2. Be able to identify new situations and scenarios when it is needed to develop a new cybersecurity solution or use an existing one. Be able to analyze proposed cybersecurity solutions and compare them with existing ones. C4.3. Capability to develop complex secure software, complying with recommended good practices of built-in security and secure coding. Capability to develop software tools used for cybersecurity. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to propose new methods to assess the cybersecurity of computing system sand devices and ways to improve it. C5. Develop rigorous and efficient security solutions to compute real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity solutions. C5.4. Capability to identify and research new cybersecurity solutions. C5.5. Capability to identify and s		• C1.3. Capability to identify and model new types of cybersecurity risks affecting end users, computing systems, and software applications, and identify and evaluate possible solutions
 C4. Design and develop highly secure software, security solutions and tools. C4.1. Knowledge of basic concepts and principles of secure software development and evaluation. Knowledge of common types of security software and tools. Knowledge of different operating system architectures, hardware and software infrastructures and frameworks needed to develop effective security solutions. C4.2. Be able to identify new situations and scenarios when it is needed to develop a new cybersecurity solution or use an existing one. Be able to analyze proposed cybersecurity solutions and compare them with existing ones. C4.3. Capability to develop complex secure software, complying with recommended good practices of built-in security and secure coding. Capability to develop software tools used for cybersecurity. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to propose new methods to assess the cybersecurity of computing systems and devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity and their criticality. Capability to identify and research new cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecur		• C1.4. Capability to identify and assess the limitations of existing cybersecurity solutions and
 C4.1. Knowledge of basic concepts and principles of secure software development and evaluation. Knowledge of common types of security software and tools. Knowledge of different operating system architectures, hardware and software infrastructures and frameworks needed to develop effective security solutions. C4.2. Be able to identify new situations and scenarios when it is needed to develop a new cybersecurity solution or use an existing one. Be able to analyze proposed cybersecurity solutions and compare them with existing ones. C4.3. Capability to develop complex secure software, complying with recommended good practices of built-in security and secure coding. Capability to develop software tools used for cybersecurity. Capability to propose new methods to assess the cybersecurity of computing systems and devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity solutions. C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, and tools used in real-life situations of existing cybersecurity resolute be used to reduce the limitations of existing cybersecurity resolutions. 		
 evaluation. Knowledge of common types of security software and tools. Knowledge of different operating system architectures, hardware and software infrastructures and frameworks needed to develop effective security solutions. C4.2. Be able to identify new situations and scenarios when it is needed to develop a new cybersecurity solution or use an existing one. Be able to analyze proposed cybersecurity solutions and compare them with existing ones. C4.3. Capability to develop complex secure software, complying with recommended good practices of built-in security and secure coding. Capability to develop software tools used for cybersecurity pentesting and assessment. C4.5. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to develop software modules and tools that could provide a high degree of systems and devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity solutions. C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions. C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype. 		
 cybersecurity solution or use an existing one. Be able to analyze proposed cybersecurity solutions and compare them with existing ones. C4.3. Capability to develop complex secure software, complying with recommended good practices of built-in security and secure coding. Capability to develop software tools used for cybersecurity pentesting and assessment. C4.5. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to propose new methods to assess the cybersecurity of computing systems and devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity and real-life aspects. Knowledge of mathematical theory some cybersecurity mechanisms and solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity solutions. C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype. 		evaluation. Knowledge of common types of security software and tools. Knowledge of different operating system architectures, hardware and software infrastructures and
 solutions and compare them with existing ones. C4.3. Capability to develop complex secure software, complying with recommended good practices of built-in security and secure coding. Capability to develop software tools used for cybersecurity pentesting and assessment. C4.5. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to propose new methods to assess the cybersecurity of computing systems and devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity and real-life aspects. Knowledge of mathematical theory some cybersecurity mechanisms and solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity solutions. C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype. 		
 solutions and compare them with existing ones. C4.3. Capability to develop complex secure software, complying with recommended good practices of built-in security and secure coding. Capability to develop software tools used for cybersecurity pentesting and assessment. C4.5. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to propose new methods to assess the cybersecurity of computing systems and devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity and real-life aspects. Knowledge of mathematical theory some cybersecurity mechanisms and solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity solutions. C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype. 		
 practices of built-in security and secure coding. Capability to develop software tools used for cybersecurity pentesting and assessment. C4.5. Capability to develop software modules and tools that could provide a high degree of cybersecurity. Capability to propose new methods to assess the cybersecurity of computing systems and devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity and real-life aspects. Knowledge of mathematical theory some cybersecurity mechanisms and solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity solutions. C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype. 		solutions and compare them with existing ones.
 cybersecurity. Capability to propose new methods to assess the cybersecurity of computing systems and devices and ways to improve it. C5. Develop rigorous and efficient security solutions to complex real-life problems and situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity and real-life aspects. Knowledge of mathematical theory some cybersecurity mechanisms and solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity solutions. C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype. 		practices of built-in security and secure coding. Capability to develop software tools used
 situations. Be able to use security mathematical tools and models, engineering approaches and technologies specific and appropriate for the information and computing system security field. C5.1. Knowledge of complex relationship between cybersecurity and real-life aspects. Knowledge of mathematical theory some cybersecurity mechanisms and solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity solutions. C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype. 		cybersecurity. Capability to propose new methods to assess the cybersecurity of computing
 field. C5.1. Knowledge of complex relationship between cybersecurity and real-life aspects. Knowledge of mathematical theory some cybersecurity mechanisms and solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity solutions. C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype. N/A 		situations. Be able to use security mathematical tools and models, engineering approaches
 Knowledge of mathematical theory some cybersecurity mechanisms and solutions are based on. C5.4. Capability to identify and assess limitations of existing cybersecurity solutions and tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity solutions. C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype. N/A 		
tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity solutions.• C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype.CrossN/A		Knowledge of mathematical theory some cybersecurity mechanisms and solutions are
tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity fields and methods that could be used to reduce the limitations of existing cybersecurity solutions.• C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype.CrossN/A		
C5.5. Capability to run research activities and projects aimed to derive applicable cybersecurity solutions, implement their hardware and/or software prototype. N/A		tools used in real-life situations, their residual cybersecurity risks, and their criticality. Capability to identify and research new cybersecurity fields and methods that could be
Cross N/A		• C5.5. Capability to run research activities and projects aimed to derive applicable
competences	Cross	N/A
	competences	

7. Discipline objectives (as results from the key competences gained)

		Deeper understanding of the x86-64 architecture from the security perspective,				
7.1	General objective	understanding the low-level mechanisms of an operating system, its components as				
		well as the basic elements necessary for its development.				
		1. Understanding the x86-64 architecture at the structural and functional level.				
		2. Understanding the different security mechanisms offered by the x86-64				
		architecture as well as how to use them within an operating system.				
		3. Knowing the different low-level components of an operating system;				
7.2	Specific objectives	understanding their role and functionality as well as the relationships between				
1.2	specific objectives	them.				
		4. Knowledge of the techniques of designing and implementing the different				
		components of an operating system.				
		5. Acquiring experience of programming some hardware components at the level				
		of hardware-software interface.				

8. Contents

0.4 Laster (will have)	Number of	Teaching	Nata
8.1. Lecture (syllabus)	hours	methods	Notes
Review the Intel x86 architecture, working modes, elements of	2		
the protected mode			
Intel x86 architecture (continued), "long" mode, switching to	2		
protected mode and "long" mode, pagination in "Long" mode,			
launching in execution of an x86 processor (boot loader)			
Assembly language for the x86 processors, execution of	2		
programs in user and kernel mode			
Interrupts and exceptions	2	Blackboard	
The PCI and PCIe Bus	2	illustrations and	
Implementation of the synchronizing mechanisms	2	explanations,	
Processes and Threads	2	beamer	
Management of the Heap memory	2	presentations, discussions, short	
The hard-disk interface, the SATA protocol	2	challenges e	
File systems (FAT, NTFS)	2		
Windows drivers	2		
Optimization of the multimedia data processing through MMX,	2		
SSE, AVX			
Virtualization techniques for Intel processors (Intel-VT, VMX,	2	1	
SGX)			
Review of the course	2	1	
Bibliography	I		

Bibliography

1) Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 1-3 (Intel – 2014 – electronic)

2) Operating System Concepts (Silberschatz, Abraham – 2012 – Wiley) (9th ed)

3) Optimizing subroutines in assembly language: An optimization guide for x86 platforms (Fog, Agner – 2013 – electronic, http://www.agner.org/optimize/)

4) Windows Operating System Internals Curriculum Resource Kit (CRK) (Microsoft – 2006 – electronic, MSDNAA)

5) Presentations (slides) of the course (https://users.utcluj.ro/~sebestyen/cursuri_lab.htm)

6) Development sites for operating system components(e.g. <u>http://wiki.osdev.org/</u>).

8.2. Laboratory	Number of hours	Teaching methods Notes
Introduction to the OS starting template used: installation, compilation, execution and testing	2	
Transitioning to long mode. Configuring CPU control structures, memory spaces and paging for 4 level paging	4	Brief reviews, blackboard
IDT configuration for exception and interrupt handling. Implementing assembly stubs and C ISR routines for handling exceptions and interrupts. Dumping the trap frames for debugging.	2	illustrations and explanations, tutorials, roadmaps, short
PIC programming for interrupt handling. Programming the PIT and keyboard and handling their interrupts.	2	live demos and guidance of code
Implementing interactive I/O e.g., command interpreter	2	development,
Programming ATA hard drive for PIO access	2	discussions,
Memory Management: physical, virtual and heap memory allocators	4	homework
Intel SMP 1.4 trampoline for booting AP processors	2	

Bibliography

- 1) Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 1-4 (Intel 2022 electronic)
- 2) Operating System Concepts (Silberschatz, Abraham 2012 Wiley) (9th ed)
- Optimizing subroutines in assembly language: An optimization guide for x86 platforms (Fog, Agner 2013 electronic, <u>http://www.agner.org/optimize/</u>)
- 4) Windows Operating System Internals Curriculum Resource Kit (CRK) (Microsoft 2006 electronic, MSDNAA)
- 5) Several sites dedicated to OS development (e.g. <u>http://wiki.osdev.org/</u>).
- 6) Several specifications regarding HW interfaces or devices (e.g. ATA, RTC, PIC, ..)

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This course was designed as a structure and content based on discussions with representatives of companies (e.g. BitDefender) directly involved in the development of security solutions. This course covers a series of knowledge that is necessary in developing methods to secure systems at a level close to the physical machine.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
Course	Ability to solve domain- specific problems Presence, (inter)activity during class hours	Written exam, including online quiz tests (e.g. on Moodle platform) and presentation(s) of different subjects / paper in the course's field during semester time.	70%
Laboratory	Ability to solve domain- specific problems Presence, (inter)activity during class hours	Evaluate lab activity. Evaluate lab assignments (homework). Evaluate solutions of problems given in a final lab exam.	30%

10.6 Minimum standard of performance

Minimum standard of performance

Lecture. Attending **minimum 50%** of lecture classes, to be allowed to take the final examination. Knowledge of the main protection mechanisms offered by the x86-64 architecture. Knowledge of the main principles of design of operating systems. Minimum final grade must be 5 for the exam to be considered passed.

Lab. Attending all lab classes (one lab could be recovered during the semester, and one more during re-

examination sessions). The ability to use the acquired knowledge to develop components within an operating system. This kind of assessment could happen in relation to assignments given during semester or subjects given during the final lab evaluation.

Minimum laboratory grade 5.

Minimum exam grade 5.

Final grade=Note exams*0.7+Laboratory grade*0.3

Promotion criterion: minimum 5 at the final grade

Date of filling in		Title Surname Name	Signature	
	Lecturer Prof. dr. eng. Gheorghe Sebestyen			
	Teachers in charge of application	Prof. Dr. Eng. Gheorghe Sebestyen		
Date of approval in t	he department	Head of department		
20.02.2024		Prof.dr.ing. Rodica Potolea		
Date of approval in t	he faculty	Dean		
22.02.2024		Prof.dr.ing. Mihaela Dinsorea	nu	