

1/5

SYLLABUS

1. Data about the program of study

1.1 Institution Technical University of Cluj-Napoca

1.2 Faculty Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Master of Science

1.6 Program of study / Qualification Cybersecurity Engineering / Master

1.7 Form of education Full time

1.8 Subject code 1.

2. Data about the subject

2.1 Subject name Software Security

2.2 Course responsible/lecturer Conf. dr. ing. Adrian COLEȘA - adrian.colesa@cs.utcluj.ro

2.3 Teachers in charge of seminars Conf. dr. ing. Adrian COLEȘA - adrian.colesa@cs.utcluj.ro

2.4 Year of study I 2.5 Semester 1
2.6 Type of assessment (E - exam, C - colloquium, V -

verification)
E

2.7 Subject category
Formative category: DA – advanced, DS – speciality, DC – complementary DS

Optionality: DI – imposed, DO – optional (alternative), DF – optional (free choice) DI

3. Estimated total time

3.1 Number of hours per week 3 of which
3.2

Course
2

3.3
Seminar

0
3.3

Laboratory
1

3.3
Project

0

3.4 Total hours in the curriculum 42 of which
3.5

Course
28

3.6
Seminar

0
3.6

Laboratory
14

3.6
Project

0

3.7 Individual study:

(a) Manual, lecture material and notes, bibliography 18

(b) Supplementary study in the library, online and in the field 18

(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 45

(d) Tutoring 0

(e) Exams and tests 2

(f) Other activities 0

3.8 Total hours of individual study (sum (3.7(a)…3.7(f))) 83

3.9 Total hours per semester (3.4+3.8) 125

3.10 Number of credit points 5

4. Pre-requisites (where appropriate)

4.1 Curriculum computer programming, data structure and algorithms, operating systems

4.2 Competence
C programming, basic knowledge of (x86) computer architecture, basic

Web programming

5. Requirements (where appropriate)

5.1 For the course blackboard, beamer, computers

5.2 For the applications blackboard, beamer, computers

6. Specific competences

mailto:adrian.colesa@cs.utcluj.ro
mailto:adrian.colesa@cs.utcluj.ro

2/5

Professional

competences

C1. Identify and understand the security issues specific to the different contexts of computing
system usage. Appropriately apply the basic elements of security management and methods
of evaluation and management of information security risks.

 C1.1. Knowledge of advanced theoretical and practical terminology, concepts, and
principles specific to cybersecurity field. Knowledge of concepts about cybersecurity risk
evaluation, and management.

 C1.2. Understanding cybersecurity risks specific to new situations and their relationship
with previously experienced situations and risks. Be able to predict possible threat scenarios
when using cybersecurity solutions in new fields or situations.

C4. Design and develop highly secure software, security solutions and tools.

 C4.1. Knowledge of basic concepts and principles of secure software development and
evaluation. Knowledge of common types of security software and tools. Knowledge of
different operating system architectures, hardware and software infrastructures and
frameworks needed to develop effective security solutions.

 C4.3. Capability to develop complex secure software, complying with recommended good
practices of built-in security and secure coding. Capability to develop software tools used
for cybersecurity pentesting and assessment.

 C4.4. Capability to assess complex software projects and identify their cybersecurity
vulnerabilities and flaws, regarding their design, implementation, or testing, and propose
improved development methods from the cybersecurity perspective.

 C4.5. Capability to develop software modules and tools that could provide a high degree of
cybersecurity. Capability to propose new methods to assess the cybersecurity of computing
systems and devices and ways to improve it

Cross

competences

N/A

7. Discipline objectives (as results from the key competences gained)

7.1 General objective

Gain the capability to assess the cybersecurity properties of software applications

regarding their design and implementation, in particular their source code.

Obtain fundamental abilities and competences to develop a vulnerability-free

application, regarding both its design and implementation.

7.2 Specific objectives

1. Have knowledge about the properties and mechanisms that define and
characterize the security of the hardware and software environment an
application runs in (i.e. security model), like: access permissions, system security
policies, and the way the application interacts with and could be influenced by its
environment.

2. Have knowledge and be aware of the main vulnerability types a software
application could suffer by, regarding both its design and implementation, like
using unvalidated input data, trusting the application’s user-controlled
environment, running the application with too high privileges.

3. Gain efficient and effective techniques to assess the cybersecurity properties of a
software application regarding both its design and implementation and be able
identify its possible flaws and vulnerabilities.

4. Have the capability to assess the severity of a discovered vulnerability.

5. Have knowledge about and be able to use built-in security design and
implementation principles and techniques for software application development,
safe and secure APIs and libraries, such that to be able to develop vulnerability-
free real-life applications.

8. Contents

8.1. Lecture (syllabus)
Number of

hours

Teaching

methods
Notes

Basic concepts, definitions and classifications of software

vulnerabilities, methods, and tools to develop a vulnerability-free
2

Blackboard

illustrations and

3/5

application and assess the cybersecurity properties of a software

application

explanations,

beamer

presentations,

discussions, short

challenges

Memory corruption vulnerabilities (buffer overflow, use-after-free

etc.)
2

Numerical and type conversion vulnerabilities, with a focus on C

language aspects (integer overflow, implicit and explicit type

conversion, pointers etc.)

2

Vulnerabilities related to the usage of strings of characters and

metacharacters
2

Operating system specific vulnerabilities (Linux and Windows):

running apps with too high privileges and bad usage of file

permission rights.

2

Operating system specific vulnerabilities (Linux and Windows):

bad creation, control and management of processes, bad handling

of system-imposed resource limits, bad management of file

descriptors etc.

2

Race condition vulnerabilities 2

Cryptography-related vulnerabilities: bad usage and management

of application handled passwords.
2

Web-related vulnerabilities: SQL injection, XML injection, session

hijacking, interaction with the operating and file system.
2

Web-related vulnerabilities: XSS and CSRF. 2

Cybersecurity requirements and threat model for software

applications
2

Cybersecurity design principles of software applications 2

Cybersecurity assessment of software applications and

vulnerability discovery: manual review and automated static

analysis

2

Cybersecurity assessment of software applications and

vulnerability discovery: automated analysis using symbolic

execution and fuzzing

2

Bibliography

1. M. Down, J. McDonald, J. Schuh, „The Art of Software Security Assessment. Identifying and Preventing Software
Vulnerabilities”, Addison-Wesley, 2007

2. M. Howard, D. LeBlanc, J. Viega, „24 Deadly Sins of Software Security. Programming Flows and How to Fix Them”,
McGraw Hill, 2010

3. M. Howard, D. LeBlanc, „Writing Secure Code for Windows Vista”, Microsoft Press, 2007
4. G. McGraw, „Software Security: Building Security In”, Addison-Wesley, 2006
5. R. Seacord, „CERT C Coding Standard: 98 Rules for Developing Safe, Reliable, and Secure Systems”, Addison-

Wesley, 2
nd

 edition, 2014
6. -, „Common Weaknesses Enumeration (CWE)”, on-line: http://cwe.mitre.org/data/index.html

8.2. Seminar / Laboratory / Project
Number

of hours
Teaching methods Notes

Useful tools for vulnerability discovery and assessment: source

code and binary executable browsers, debuggers, source code

automatic analysis and evaluation tools.

2

Brief reviews,

blackboard

illustrations and

explanations,

tutorials,

roadmaps, short

Coding recommendations and techniques to avoid, discover and

assess memory corruption, numerical and type conversion

vulnerabilities in C programs.

2

http://cwe.mitre.org/data/index.html

4/5

Coding recommendations and techniques to avoid, discover and

assess vulnerabilities related to the usages of strings of characters

and meta-characters.

2

live demos and

guidance of

code

development,

discussions,

homework

Coding recommendations and techniques to avoid, discover and

assess operating system (Linux / Windows) specific and race

condition vulnerabilities.

2

Coding recommendations and techniques to avoid, discover and

assess Web-application vulnerabilities: SQL injection, session

hijacking, bad management of passwords.

2

Coding recommendations and techniques to avoid, discover and

assess Web-application vulnerabilities: XSS, CSRF, XEE.
2

Automated techniques for vulnerability discovery: static analysis,

symbolic execution, and fuzzing.
2

Bibliography

1. M. Howard, D. LeBlanc, J. Viega, „24 Deadly Sins of Software Security. Programming Flows and How to Fix Them”,
McGraw Hill, 2010

2. --, „Common Weaknesses Enumeration (CWE)”, on-line: http://cwe.mitre.org/data/index.html
3. --, American Fuzzy Lop, https://github.com/google/AFL
4. --, angr, https://angr.io/
5. --, pwntools – CTF toolkit, https://github.com/Gallopsled/pwntools

9. Bridging course contents with the expectations of the representatives of the community, professional

associations, and employers in the field

It is performed by periodic talks with important cybersecurity industry representatives.
We also keep updated with good ideas and proposals of other academic institutions in our country and abroad that run
cybersecurity related study programs or/and research projects, like for instance:

 Information Security, Master of Science program, „Al. I. Cuza” University, Iași, Romania, Computer Science Faculty,
https://www.info.uaic.ro/wp-content/uploads/2022/10/MSI-en.pdf

 InfoSec, Master of Science program in IT Security, Military Technical Academy „Ferdinand I”, Bucharest, Romania,
https://www.mta.ro/masterinfosec/curricula.html

 Information Security, Master of Science program, Carnegie Mellon University, SUA,
https://www.cmu.edu/ini/academics/msis/

 Information Security, Master in Information Security, Royal Holloway University of London, Information Security
Group, https://www.royalholloway.ac.uk/studying-here/postgraduate/information-security/information-security/

10. Evaluation

Activity type Assessment criteria Assessment methods
Weight in the final

grade

Course

Ability to define concepts
and methods specific to
secure coding, secure
application development,
and cybersecurity
assessment of software
applications.
Capability to give correct and
functional solutions to
problems specific to
software security field.
Attendance frequency,
interest, and interactivity
during lecture classes.

Written exam, including online quiz
tests (e.g. on Moodle platform) and
presentation(s) of different
subjects / paper in the course’s
field during semester time.

In exceptional cases, which
imposes remote classes, the exam
could be given online remotely,
using Moodle and Teams
platforms.

50%

Laboratory
Capability and ability to give
correct and functional

Evaluate lab activity.
Evaluate lab assignments

50%

http://cwe.mitre.org/data/index.html
https://github.com/google/AFL
https://angr.io/
https://github.com/Gallopsled/pwntools
https://www.info.uaic.ro/wp-content/uploads/2022/10/MSI-en.pdf
https://www.mta.ro/masterinfosec/curricula.html
https://www.cmu.edu/ini/academics/msis/
https://www.royalholloway.ac.uk/studying-here/postgraduate/information-security/information-security/

5/5

solutions to problems
specific to software security
field.
Attendance frequency,
interest, and interactivity
during lab classes.

(homework).
Evaluate solutions of problems
given in a final lab exam.

In exceptional cases, which

imposes remote classes, the exam

could be given online remotely,

using Moodle and Teams

platforms.

Minimum standard of performance
Lecture. Attending minimum 50% of lecture classes, to be allowed to take the final examination. Students must be
able to define and describe fundamental software vulnerabilities, like „buffer overflow”, „SQL injection”, XSS etc. and
secure software design principles. Minimum final grade must be 5 for the exam to be considered passed.
Lab. Attending all lab classes (one lab could be recovered during the semester, and one more during re-examination

sessions). Students must be able to identify fundamental vulnerabilities in given programs and fix them writing secure

code. This kind of assessment could happen in relation to assignments given during semester or subjects given during

the final lab evaluation. Minimum lab grade must be 5 for being allowed at final exam.

Date of filling in Title Surname Name Signature
 Lecturer Conf. dr. ing. Adrian COLEȘA

 Teachers in
charge of
application

 Conf. dr. ing. Adrian COLEȘA

Date of approval in the Computer Science Department
20.02.2024

Head of department
Prof.dr.ing. Rodica Potolea

Date of approval in the faculty of Automation and Computer Science
22.02.2024

Dean
Prof.dr.ing. Mihaela Dinsoreanu

