SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	48.10

2. Data about the subject

2.1 Subject name			Pattern Recognition Systems			
2.2 Course responsible / lecturer Prof. dr. eng. Sergiu Nedevschi - <u>Sergiu.Nedevschi@cs.utcluj.r</u>		g. Sergiu Nedevschi - <u>Sergiu.Nedevschi@cs.utcluj.ro</u>				
2.3 Teachers in charge o laboratory / project	f semin	ars /	Prof. dr. eng. Florin Oniga - Florin.Oniga@cs.utcluj.ro Assoc. prof. dr. eng. Raluca Brehar - Ion.GIOSAN@cs.utcluj.ro Assoc. prof. eng. Ion Giosan - Raluca.Brehar@cs.utcluj.ro Lect. dr. eng. Andra Petrovai - Andra.PETROVAI@cs.utcluj.ro			
2.4 Year of study	IV	2.5 Sem	2.5 Semester 7 2.6 Type of assessment (E - exam, C - colloquium, V - verification)			E
DF – fundament		entală, l	DD — 1	în domeniu, DS – de specialitate, DC – complementară	DS	
2.7 Subject category	DI –	DI – Impusă, DOp – opțională, DFac – facultativă				DOp

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars		Laboratory	2	Project	1
3.2 Number of hours per semester	70	of which:	Course	28	Seminars		Laboratory	28	Project	14
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography						28				
(b) Supplementary study in the library, online and in the field						20				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							23			
(d) Tutoring						4				
(e) Exams and tests					5					
(f) Other activities:						0				
					1					

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	80
3.5 Total hours per semester (3.2+3.4)	150
3.6 Number of credit points	6

4. Pre-requisites (where appropriate)

4.1 Curriculum	Image Processing
4.2 Competence	Computer programming, Data structures and algorithms, Probability Theory,
	Artificial Intelligence.

5. Requirements (where appropriate)

5.1. For the course	Blackboard, video projector, computer
5.2. For the applications	Workstations, specific software (Visual Studio, Diblook, OpenCV, Matlab)

6. Specific competence

6.1 Professional competences	C4 – Improving the performances of the hardware, software and
	communication systems (2 credits)

6.2 Cross competences	 C4.1 - Identifying and describing the defining performance elements of hardware, software and communication systems C4.2 - Explaining the interaction of the factors that determine the performances of hardware, software and communication systems C4.3 - Applying fundamental methods and principles for increasing performance of hardware, software and communication systems C4.4 - Choosing criteria and methods for performance evaluation of hardware, software and communication systems C4.5 - Developing performance based professional solutions for hardware, software and communication systems C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits) C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator C5.2 - Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field C5.3 - Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems C5.4 - Adequate utilization of quality, safety and security standards in information processing C5.5 - Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements C6.1 - Describing intelligent systems (2 credits) C6.2 - Using domain-specific tools for explaining the operation of intelligent systems C6.3 - Applying fundamental methods and principles for specifying solutions for typical problems using intelligent systems C6.4 - Choosing criteria and methods for the evaluation of quality, performances and limitations of information systems C6.5 - Developing an
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Knowledge, understanding and use of concepts related to pattern recognition.
7.2 Specific objectives	Knowledge, understanding and use of model-based pattern recognition methods using statistical approaches, linear discriminant methods, support vectors, and ensemble of classifiers. Knowledge, understanding and use of the specific operations of a pattern recognition system: data preprocessing, dimensional reduction, relevant feature selection, building the prediction model, selection of the optimum model, performance analysis.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction	2	Interactive teaching,	
Probability Review	2	using oral	
Bayesian Decision Theory 1	2	presentations	
Bayesian Decision Theory 2	2	supported by multimedia tools,	
Parametric Methods for Density	2	consultations,	
Nonparametric Methods for Density Estimation	2	involving students in	
Linear Discriminant Functions; Perceptron	2	research and	

Kernel Methods	2	development
Support Vector Machines	2	activities.
Ensemble Methods	2	
Image Classification Pipeline	2	
Loss Functions and Optimization	2	
Back Propagation and Neural Networks	2	
Convolutional Neural Networks	2	

Bibliography

- 1. Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Clasification", John Wiley and Sons, 2001.
- 2. K. Murphy, "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012
- 3. C.M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006
- 4. Convolutional Neural Networks for Visual Recognition, http://cs231n.stanford.edu, 2019

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Laboratory			
Introduction	2		
Least Mean Squares Line Fitting	2		
RANSAC – fitting a line to a set of points	2		
Hough Transform for line detection	2		
Distance Transform (DT). Pattern Matching using DT	2		
Probability Density Estimation	2	Presentation using	
K-Means Clustering	2	the blackboard and multimedia tools.	
Principal Component Analysis	2	- multimedia tools.	
K-Nearest Neighbor Classifier	2	Experiments and	
Naïve Bayes Classifier: Simple Digit Recognition Application	2	implementation using	
Linear classifiers. Perceptron algorithm	2	specific software tools	
Adabost with Decision Stumps	2	(MS Visual Studio, Diblook)	
Support Vector Machine	2		
Lab Assessment	2	Evaluation of the	
Project		design and	
Topic assignment (week 1, 2)	2	implementation phases.	
Analyzes, specification and design (week 3,4)	2	pilases.	
Presentation of the approach (week 5,6)	2		
Implementation (week 6,7,8,9,10); Intermediate pres. (week 9,10)	2		
Evaluation and optimization (week 11,12)	2		
Report elaboration (week 12,13)	2		
Final Presentation (week 13,14)	2		
Bibliography			
S. Nedevschi, "Lecture Notes", ftp. utclui ro/pub/users/pedevschi/SR	E/		

S. Nedevschi, "Lecture Notes", ftp.utcluj.ro/pub/users/nedevschi/SRF/

S.Nedevschi, & all, Pattern Recognition - Laboratory Guide, UT Press, 2020.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The subject is part of the Computer Science and Information Technology curriculum, its contents combining fundamental and practical aspects used in the field of pattern recognition. The subject content is correlated with the specific curricula of other Universities, in Romania and abroad, and is evaluated by government agencies (CNEAA and ARACIS). The subject's activities are meant to make the students familiar with the applications and the research directions of the image processing field, helped by the internationally renowned experience of the teachers.

10. Evaluation

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Testing the theoretical knowledge acquired, and the practical abilities of problem solving.	Written exam	50%
Seminar	-	-	-
Laboratory	Testing the practical abilities of designing	Lab assessment, project	
Project	and implementing solutions to specific problems. Attendance and activity.	assessment	50%

Minimum standard of performance:

Modeling and implementation of solutions to specific engineering problems, using the domain's formal apparatus.

Grade calculus: 25% laboratory +25% project + 50% final exam

Conditions for participating in the final exam: Laboratory \geq 5, project \geq 5

Conditions for promotion: grade ≥ 5

Date of filling in: 12.06.2024	Teachers	Title First name Last name	Signature
	Course	Prof. dr. eng. Sergiu Nedevschi	
	Applications	Prof. dr. eng. Florin Oniga	
		Assoc. prof. dr. eng. Raluca Brehar	
		Assoc. prof. dr. eng. lon Giosan	

Date of approval in the department 20.02.2024	Head of department, Prof. dr. eng. Rodica Potolea
Date of approval in the Faculty Council 22.02.2024	Dean, Prof.dr.eng. Mihaela Dînșoreanu