SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	10.00

2. Data about the subject

2.1 Subject name <i>Electrotechnics</i>						
2.2 Course responsible / lecturer			Assoc.	Assoc. prof. dr. eng. Laura Darabant - <u>Laura.Darabant@et.utcluj.ro</u>		
2.3 Teachers in charge of s laboratory / project	semin	ars /	Assoc. prof. dr. eng. Laura Darabant - <u>Laura.Darabant@et.utcluj.ro</u>			
2.4 Year of study	I	I 2.5 Semester		2	2.6 Type of assessment (E - exam, C - colloquium, V - verification)	Е
DF – fundame		ntală, DD – în domeniu, DS – de specialitate, DC – complementară			DD	
2.7 Subject category	DI – I	DI – Impusă, DOp – opțională, DFac – facultativă				

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	3	Seminars		Laboratory	1	Project	
3.2 Number of hours per semester	56	of which:	Course	42	Seminars		Laboratory	14	Project	
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography							23			
(b) Supplementary study in the library, online and in the field							12			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							20			
(d) Tutoring							10			
(e) Exams and tests							4			
(f) Other activities:						0				
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 69										
3.5 Total hours per semester (3.2+3.4)125										
3.6 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Mathematics I, II; Physics
4.2 Competence	N/A

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	The presence of the lab is mandatory

6. Specific competence

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science
	concepts
	 C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems

	 C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Operating with basic concepts of electrical engineering
7.2 Specific objectives	 Acquiring theoretical knowledge's regarding electrotechnics. Acquiring practical skills regarding electrical circuits.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Electric and magnetic quantities. Static electric and magnetic fields (the electric field in free space and in material, electric current, the magnetic field in free space and in material)	3		
Laws and theorems of electromagnetic field	3		
Electrical capacitance, energy and forces	3		
Magnetic circuits. Self-inductance and mutual inductance. Magnetic energy and forces.	3		
Basic concepts, units and laws of circuit theory (characteristic values, power in sinusoidal regime, representation of sinusoidal functions by vectors and complex numbers)	3		
The characterisation of the linear circuits in complex plane, the complex form of some theorems	3		
Equivalent impedances (series and parallel connection, without mutual inductance, with mutual inductance, real condenser, real inductance, air core transformer)	3	Multimedia, PowerPoint Presentations,	
Resonance (in series, parallel, real, inductively coupled circuits, power factor improvement)	3	Demonstration board	
Two-port networks (equations, equivalent circuits, open-circuit and short-circuit tests, characteristic impedance, propagation constant, filters)	3		
Network theorems (th superposition theorem, Thevenin-Norton theorem, mesh or loop analysis, node analysis, matrix methods)	3		
Transient regime of linear circuits (continuity conditions, transient behaviour of the R-L, R-C and R,L,C)	3		
Transient regime of linear circuits (the Laplace transform, Duhamel integral, state variable method)	3		
Study-state periodic non-sinusoidal regime (Fourier expansion, power, network analysis)	3		
Transmission lines (the primary line parameters, the equations of the transmission line, voltage and current waves on long lines, distortionless lines)	3		

Bibliography

- 1. The Theory of Electric Circuits, authors: RV Ciupa, V. Jopa, Casa Cartii de Stiinta Publishing House, 2003, ISBN 973-9204-98-8
- 2. Simion, E., Maghiar, T., *Electrotehnica*, E.D.P., Bucureşti, 1982
- 3. Mocanu, C. I., Teoria câmpului electromagnetic, E.D.P., București, 1981

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes	
Determination of the spectrum and equipotential surfaces of an electric field using a electrokinetic model	1			
The study of a magnetic circuit. The measurement of the iron losses using an oscilloscope				
Representation of sinusoidal functions by vectors and complex numbers		Practical exercises		
Analysis of the R,L,C series and parallel circuits, of the voltage and current resonances				
Power transfer in inductively coupled circuits	1			
The study of a circuit in non-sinusoidal regime	1			
The study of the transient regime, methods for solving circuits in transient regime				
Bibliography				
 Răduleţ, R., <i>Bazele electrotehnicii. Probleme.</i>, E.D.P., Bucureşti, 1981 Dan Doru Micu, Laura Darabant, Denisa Stet, Mihaela Cretu, Andrei Ceclan, Levente Czumbil, Teoria circuitelor electrice. Probleme, UT Press, Cluj-Napoca, 978-606-737-140-6, 2016, 280 pagini; 				

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course		Three hours written examination, written test (WT)	0.8 WT
Seminar			
Laboratory		Laboratory works (LW)	0.2 LW
Project			
Minimum standard	d of performance: N=0,8		
WT + 0,2 LW			
Pass conditions: : N	N≥5; LW≥5		

Date of filling in: 07.06.2024	Responsible	Title First name Last name	Signature
	Course	Assoc.prof.dr.eng. Laura Darabant	
	Applications	Assoc.prof.dr.eng. Laura Darabant	

Date of approval in the department	Head of department ,
20.02.2024	Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean,
22.02.2024	Prof.dr.eng. Mihaela Dînşoreanu