Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	103.00

2. Data about the subject

2.1 Subject name			Basics of Quantum Information			
2.2 Course responsible / lecturer		CS1 dr. Liviu Zarbo - liviu.zarbo@itim-cj.ro				
2.3 Teachers in charge of a	pplica	tions	CS Levente Mathe - levente.mathe@itim-cj.ro AC Larisa Pioras-Timbolmas - larisa.timbolmas@itim-cj.ro			
2.4 Year of study	Ш	2.5 Sem	ester	ester 1 2.6 Assessment (E/C/V)		
DF – fundamental, DD – in the field, DS – specialty, DC – complementary				e field, DS – specialty, DC – complementary	DC	
2.7 Type of subject DI – compulsor		y, DO –	electiv	ve, Dfac – optional	DFac	

3. Estimated total time

J. Estimated total time										
3.1 Number of hours per week	3	of which:	Course	2	Seminar		Laboratory	1	Project	
3.2 Number of hours per semester	42	of which:	course	28	Seminar		Laboratory	14	Project	
3.3 Individual study										
(a) Manual, lecture material	and no	tes, biblio	graphy							10
(b) Supplementary study in the library, online and in the field						10				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10			
(d) Tutoring							0			
(e) Exams and tests							3			
(f) Other activities:						0				
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 33										
3.5 Total hours per semester (3.2+3.4) 75										

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Linear Algebra
	Mathematical Analysis
	Physics
	Programming
4.2 Competence	

5. Requirements (where appropriate)

5.1. For the course	
5.2. For the applications	

6. Specific competences

6.1 Professional competences	Basic high-school level or first year undergraduate physics: mechanics, electricity and magnetism, optics
	Basic knowledge of linear algebra and calculus, first year undergraduate student level
	Basic programming knowledge, first year undergraduate student level
6.2 Cross competences	

7. Course objectives

7.1 General objective	Developing general knowledge relevant to applications in the field of quantum computation and quantum communications
7.2 Specific objectives	 Assimilating the basics of quantum computation: qubits, quantum gates, quantum circuits, quantum algorithms Developing the basic skills for developing quantum algorithms Understanding the basics of quantum communications protocols.

8. Contents

8. Contents					
8.1 Curs	Nr.ore	Teaching methods	Notes		
1. Introductory notions.					
From classical to quantum computing					
 The dual behavior of the quantum objects 	2				
Tunneling					
Double slit experiment					
2. Quantum states					
 Notations 					
Probabilities	_				
Matrix and vector representation of quantum states	2				
Qubits					
Pure states and mixed states					
3. Observables and quantum measurement 1					
Observables and operators					
The Heisenberg principle	2				
Projective measurements	_				
The Stern-Gerlach experiment					
•					
 4. Observables and quantum measurement 2 Quantum state vectors. 					
•	,				
Observables and operators, the density matrix. Probabilities and over statics values.	2				
 Probabilities and expectation values. Partial measurements 					
5. Qubits		Blackboard, video-			
 The two-level system and real life examples 		lectures, discussions			
Quantum gates	2	of examples, problem			
Superpositions and entanglement of qubits		solving			
The Bloch sphere.					
6. Qubit control					
Larmor precession.	2				
Rabi oscillations	_				
Functioning of quantum gates.					
7. Quantum measurement and applications 1.					
 The no-cloning theorem 					
 Quantum teleportation 	2				
 Quantum sensing 					
 Quantum tomography 					
8. Quantum measurement and applications 2.					
 Quantum random number generation 	2				
 Quantum communication protocols (BB84). 					
9. Quantum Communication					
 Quantum cryptography notions 	2				
 Quantum communication networks. 					
10. Quantum computation and simulations					
digital and analog quantum computers.	2				
 Quantum simulations – concepts/applications. 	_				
11. Quantum circuits and algorithms					
The Uranium platform	2				
The oraniam plactorm	I.	l	I		

 Using online quantum computing resources (e.g. IBMQ) 	
12. Quantum algorithms 1.	
 Deutsch-Josza algorithm. 	2
Grover algorithm	
13. Quantum algorithms 2.	
 Quantum Fourier transform 	2
 RSA and Shor's algorithm 	
14. Physical platforms for quantum computing	
 Superconducting qubits 	2
 Cold atoms 	
 Ion traps 	

Bibliography

- 1. Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).
- 2. Ioan Burda, Introduction to Quantum Computation, Universal Publishers (2005).
- 3. David McIntyre, Quantum Mechanics: A Paradigms Approach, Pearson Addison-Wesley (2012).
- 4. Cohen-Tannoudji, Quantum Mechanics, Wiley-VCH; 2nd edition (2019).

8.2 Aplications (seminar/laboratory/project)	No.hours	Teaching methods	Notes
Visualising qubit operations: Bloch sphere, single qubit gates, destructive and constructive interference (Quantum Odyssey)	2		
2. Quantum circuits in Q. Odyssey: vectors, eigenvalues, basis change	2	Labad in INCOTINA	
3. Generating entanglement in quantum circuits (quantum gates: CNOT, SWAP, Toffoli). Visualisation in Q. Odyssey, circuits on the Uranium platform.	2	Lab work in INCDTIM Quantum Software lab, using tools such	
4. Time evolution of qubits and their observables: visualization in Python	2	as Uranium, Quantum Oddyssey, Google Colab.	
5. Uranium platform: multiqubit quantum circuits and quantum measurements; Deutsch algorithm	2	Google Colab.	
6. Quantum oracles, Grover's algorithm (Uranium, Q. Odyssey)	2		
7. The Quantum Fourier Transform	2		

Bibliography

- 1. Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).
- 2. Ioan Burda, Introduction to Quantum Computation, Universal Publishers (2005).
- 3. David McIntyre, Quantum Mechanics: A Paradigms Approach, Pearson Addison-Wesley (2012).
- 4. Cohen-Tannoudji, Quantum Mechanics, Wiley-VCH; 2nd edition (2019).

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Solving 2 problems + 1 theory set of questions	Written exam	60%
Seminar			
Laboratory		Periodic lab quizzes	40%
Project			
Minimum standar	d of performance:		

Date of filling in:	Teachers	Title Firstname NAME	Signature
Course		Dr. Liviu Zarbo	
Aplications		Levente Mathe	
		Larisa Pioras-Timbolmas	

Date of approval in the department 20.02.2024	Head of Departament, Prof. dr. eng. Rodica Potolea
Date of approval in the Faculty Council 22.02.2024	Dean, Prof. dr. eng. Mihaela Dinsoreanu