SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	53.

2. Data about the subject

2.1 Subject name			Inform	Information Systems				
2.2 Course responsible /	ecture	rer Assoc. prof. dr. eng. Ovidiu Pop – Ovidiu.Pop@cs.utcluj.ro						
2.3 Teachers in charge of laboratory / project	semin	ars/	Assoc. prof. dr. eng. Ovidiu Pop – Ovidiu.Pop@cs.utcluj.ro					
2.4 Year of study	IV 2.5 Semester				2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E		
2.7 Subject category		ntală, DD	– în c	domeniu, DS – de specialitate, DC – complementară	DS			
		Op – opț	ionalà	ă, DFac – facultativă	DI			

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per							,			
semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:		•			•					
(a) Manual, lecture materia	al and r	otes, bibli	ography							20
(b) Supplementary study in the library, online and in the field							20			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						15				
(d) Tutoring										
(e) Exams and tests							5			
(f) Other activities:						9				
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 69										
3.5 Total hours per semester (3.2	+3.4)				125					
3.6 Number of credit points					5					

4. Pre-requisites (where appropriate)

4.1 Curriculum	Software engineering (UML), database design
4.2 Competence	Object-oriented design, UML usage

5. Requirements (where appropriate)

5.1. For the course	50% (attendance)
5.2. For the applications	80% (attendance)

6. Specific competence

6.1 Professional competences				
	communication systems (1 credit)			
	C4.1 - Identifying and describing the defining elements of the performance			
	the hardware, software and communication systems			
	C4.2 - Explaining the interaction of the factors that determine the			
	performances of the hardware, software and communication systems			
	C4.3 - Applying the fundamental methods and principles for increasing the			
	performances of the hardware, software and communication systems			

	C4.4 - Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
	C4.5 - Developing professional solutions for hardware, software and communication systems based on performance optimization
	C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (1 credit) C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
	 C5.2 - Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field C5.3 - Using fundamental principles and methods for ensuring the security, the security and eace of exploitation of the computing systems.
	safety and ease of exploitation of the computing systems C5.4 - Proper utilization of the quality, safety and security standards in the field of information processing
	C5.5 - Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
	C6 - Designing intelligent systems (2 credits) C6.1 - Describing the components of intelligent systems
	C6.2 - Using domain-specific tools for explaining and understanding the functioning of intelligent systems
	C6.3 - Applying the fundamental methods and principles for specifying solutions for typical problems using intelligent systems
	C6.4 - Choosing the criteria and evaluation methods for the quality, performances and limitations of intelligent systems
	C6.5 - Developing and implementing professional projects for intelligent systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Improve requirements management and design abilities of students in their senior year.
7.2 Specific objectives	Apply RUP metholologies for requirements management and design patterns

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Requirements Maturity Management	2		
RUP – Overview and Best Practices	2		
RUP – Iterative Development	2		
The Requirements Discipline	2		
Capturing Requirements: Use Cases (I)	2		
Capturing Requirements: Use Cases (II) – Best Practices	2		
Analysis Model Artifacts: Vision, Glossary, Supplementary Specification (I)	2	Video procentation	
Analysis Model Artifacts: Vision, Glossary, Supplementary Specification (II)	2	Video presentation	
Domain Model	2		
GRASP Design Patterns (I)	2		
GRASP Design Patterns (II)	2		
Use Case Realizations with GRASP Design Patterns (I)	2		
Use Case Realizations with GRASP Design Patterns (II)	2		
Use Case Realizations with GRASP Design Patterns (III)	2		
Bibliography			
1. Craig Larman – Applying UML and Patterns (2003)			

2. Alistair Cockburn – Writing Effective Use Cases (2002)			
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Requirements Artifacts: Vision, Glossary, Supplementary Specification	4		
Generate a Vision document based on a RUP template	4	Students are	
Generate a Supplementary Specification document based on a RUP template	4	encouraged to use their knowledge in	
Requirements Artifacts: Use Cases	4	implementation projects	
Generate a Use Case document based on a RUP template	4	projects	
Generate an Analysis Model	4		
Lab Assessment	4		
Bibliography			
1. Keneth Rubin – Essential Scrum (2012)			

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The knowledge gained overlapping demands of all IT employers.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade			
Course	Theory and problem solving	exam	90%			
Seminar						
Laboratory	Ability to apply theoretical knowledge	Artefacts evaluation	10%			
Project	oject					
Minimum standar	d of performance:					
Proven understan	ding of requirements artifacts and ability to ge	enerate a design model.				
Grade calculus: 90)-% exam, 10% lab					
Conditions for par	ticipating in the final exam: Lab ≥ 5					
Conditions for promotion: Grade \geq 5						
Note: students at	tending less than 50% of the lectures are no	ot entitled to address any claims v	with respect to their			
evaluation						

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Assoc. prof. dr. eng. Ovidiu Pop	
	Applications	Assoc. prof. dr. eng. Ovidiu Pop	
		Assoc. prof. dr. eng. ovidiu r op	

 Date of approval in the department
 Head of department

 Prof.dr.ing. Rodica Potolea

 Date of approval in the Faculty Council
 Dean

 Prof.dr.ing. Liviu Miclea