# **SYLLABUS**

# 1. Data about the program of study

| 1.1 Institution                    | The Technical University of Cluj-Napoca     |
|------------------------------------|---------------------------------------------|
| 1.2 Faculty                        | Faculty of Automation and Computer Science  |
| 1.3 Department                     | Computer Science                            |
| 1.4 Field of study                 | Computer Science and Information Technology |
| 1.5 Cycle of study                 | Bachelor of Science                         |
| 1.6 Program of study/Qualification | Computer science/ Engineer                  |
| 1.7 Form of education              | Full time                                   |
| 1.8 Subject code                   | 6.                                          |

# 2. Data about the subject

| 2.1 Subject name                              |                                                                              |         | Physic                        | Physics                                                                    |                       |    |  |
|-----------------------------------------------|------------------------------------------------------------------------------|---------|-------------------------------|----------------------------------------------------------------------------|-----------------------|----|--|
| 2.2 Course responsible/le                     | cturer                                                                       | •       | Prof.di                       | Prof.dr.fiz. Radu Fechete                                                  |                       |    |  |
| 2.3 Teachers in charge of laboratory/ project | semin                                                                        | nars/   | Lect. Dr. Dumitrita Corpodean |                                                                            |                       |    |  |
| 2.4 Year of study                             | ı                                                                            | 2.5 Sem | ester                         | ster 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification) |                       |    |  |
| 2.7 Cubicat astanan                           | DF — fundamentală, DD — în domeniu, DS — de specialitate, DC — complementară |         |                               |                                                                            | DF                    |    |  |
| 2.7 Subject category  DI – Impusă, Di         |                                                                              |         | Ор – орţ                      | ionald                                                                     | ň, DFac – facultativă | DI |  |

#### 3. Estimated total time

| 3.1 Number of hours per week                                                         | 3  | of which:   | Course | 2  | Seminars |    | Laboratory | 1  | Project |  |
|--------------------------------------------------------------------------------------|----|-------------|--------|----|----------|----|------------|----|---------|--|
| 3.2 Number of hours per                                                              | 42 | of which:   | Course | 28 | Seminars |    | Laboratory | 14 | Project |  |
| semester                                                                             | 42 | or writeri. | Course | 20 | Seminars |    | Laboratory | 14 | Project |  |
| 3.3 Individual study:                                                                |    |             |        |    |          |    |            |    |         |  |
| (a) Manual, lecture material and notes, bibliography                                 |    |             |        |    |          | 16 |            |    |         |  |
| (b) Supplementary study in the library, online and in the field                      |    |             |        |    |          |    | 10         |    |         |  |
| (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays |    |             |        |    |          |    | 14         |    |         |  |
| (d) Tutoring                                                                         |    |             |        |    |          |    | 10         |    |         |  |
| (e) Exams and tests                                                                  |    |             |        |    |          |    | 3          |    |         |  |
| (f) Other activities:                                                                |    |             |        |    |          |    | 5          |    |         |  |
| (f) Other activities:                                                                |    |             |        |    |          | 5  |            |    |         |  |

| 3.4 Total hours of individual study (suma (3.3(a)3.3(f))) | 58 |  |  |
|-----------------------------------------------------------|----|--|--|
| 3.5 Total hours per semester (3.2+3.4)                    |    |  |  |
| 3.6 Number of credit points                               | 4  |  |  |

# 4. Pre-requisites (where appropriate)

| 4.1 Curriculum | Good knowledge in high school physics                            |
|----------------|------------------------------------------------------------------|
|                | Good knowledge in high school mathematics                        |
| 4.2 Competence | Some knowledge in operating computers (Word, Power Point, Excel, |
|                | www).                                                            |

# 5. Requirements (where appropriate)

| 5.1. For the course       | N/A |
|---------------------------|-----|
| 5.2. For the applications | N/A |

# 6. Specific competence

| 6.1 Professional competences | C1 – Operating with basic Mathematical, Engineering and Computer Science                 |
|------------------------------|------------------------------------------------------------------------------------------|
|                              | concepts                                                                                 |
|                              | <b>C1.1</b> - Recognizing and describing specific concepts to calculability, complexity, |
|                              | programming paradigms and modeling of computing and communication                        |
|                              | systems                                                                                  |
|                              | C1.2 - Using specific theories and tools (algorithms, schemes, models,                   |

|                       | protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems  C1.3 - Building models for various components of computing systems  C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems  C1.5 - Providing theoretical background for the characteristics of the designed systems |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.2 Cross competences | N/A                                                                                                                                                                                                                                                                                                                                                                                |

#### 7. Discipline objective (as results from the key competences gained)

| <del></del>             | in the key competences gamea;                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 7.1 General objective   | <ul> <li>Introduction of the most important physical quantities that are encountered in automation engineering.</li> <li>Introduction of the main laws of physics that play a central role in automatical engineering applications.</li> </ul> |  |  |  |  |  |  |  |
|                         | automation engineering applications.                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 7.2 Specific objectives | Understanding of the most important laws of classical mechanics                                                                                                                                                                                |  |  |  |  |  |  |  |
|                         | Knowledge of the oscillatory and wave phenomena                                                                                                                                                                                                |  |  |  |  |  |  |  |
|                         | Knowledge of the sound characteristics and transfer phenomena                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                         | Knowledge of the electrical, magnetically and electromagnetic phenomena.                                                                                                                                                                       |  |  |  |  |  |  |  |
|                         | Knowledge of the quantum mechanical phenomena.                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                         | The ability to document alone in a given scientific problem using the books library and the Internet.                                                                                                                                          |  |  |  |  |  |  |  |
|                         | The ability to elaborate and to present a report on a given scientific problem                                                                                                                                                                 |  |  |  |  |  |  |  |
|                         | The ability to represent graphically the physical quantities.                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                         | The ability to use commercial computer programs for interpretation of the experimental data.                                                                                                                                                   |  |  |  |  |  |  |  |
|                         | The ability to solve a given physical problem and to express it in a mathematical form.                                                                                                                                                        |  |  |  |  |  |  |  |
|                         | The ability to work in a team for solving real physical problems                                                                                                                                                                               |  |  |  |  |  |  |  |

#### 8. Contents

| 8.1 Lectures                                                                                                | Hours | Teaching methods                                        | Notes |
|-------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------|-------|
| C1. Introduction in Physics. Fundamental and derivate physical                                              | 2     |                                                         | Teams |
| quantities and their measurement units. Basics of kinematics:                                               | 2     |                                                         | reams |
| <b>C2.</b> Elements of motion (reference system, trajectory, space).                                        |       | Didactic discourse,                                     | Teams |
| Velocity. Linear motions with constant velocity. Acceleration.                                              |       | exposure and explanation of                             |       |
| Linear motion with constant acceleration.                                                                   | 2     | curricular subjects,                                    |       |
| Kinematics: Curvilinear motions (trajectory, velocity and                                                   |       | narrative-story related to                              |       |
| acceleration).                                                                                              |       | the physics history and                                 |       |
| C3. Circular motion (angle, circular velocity, circular acceleration,                                       |       | association with real life facts. Didactic conversation | Teams |
| law of motion with uniform angular velocity, law of motion with                                             | 2     | (heuristics and catechetic) in which the students are   |       |
| uniform angular acceleration). Relations between linear and                                                 | 2     |                                                         |       |
| circular quantities. Specific measurement units.                                                            |       | involved.                                               |       |
| <b>C4.</b> Dynamics: 1 <sup>st</sup> , 2 <sup>nd</sup> and 3 <sup>rd</sup> principles of dynamics. Inertial |       | Demonstration of physical                               | Teams |
| mass. Force. Linear momentum. Mechanic work. Power. Energy                                                  | 2     | laws in mathematical form and using objects to          |       |
| (kinetic, potential, total).                                                                                |       | represents the                                          |       |
| <b>C5.</b> Momentum of force. Angular momentum. Conservations laws                                          | 2     | physical phenomena                                      | Teams |
| of: linear momentum, kinetically momentum, energy.                                                          | 2     | at reduced scale.                                       |       |
| <b>C6.</b> Oscillatory motion: Linearly harmonically oscillator. Dumped                                     | 2     | Demonstration with actions                              | Teams |
| oscillations. Forced oscillations, resonance.                                                               | _     | performed by students which are asked to: extract       |       |
| C7. Waves. Wave function. Differential equation, Characteristic                                             | 2     | from problem the                                        | Teams |
| phenomena: reflection, refraction, interference, diffraction.                                               |       | significant data, to                                    |       |

| Standing waves.                                                               |   | observe,identify and      |       |
|-------------------------------------------------------------------------------|---|---------------------------|-------|
| C8. Acoustics: Definition. Sound sources. Fundamental sound and               |   | classifyphysical laws and | Teams |
| superior harmonics. Sounds quality. Closed chambers acoustics,                | 2 | types of motions.         |       |
| sound reverberation, reverberation time.                                      |   |                           |       |
| <b>C9.</b> Electricity. Introduction. Electric charge. Coulombian Force.      |   |                           | Teams |
| Electric Field. Electric Field intensity. Electric Flux. Gauss law for        | 2 |                           |       |
| the electric field. Electric field work.                                      |   |                           |       |
| <b>C10.</b> Electric current. Definition. Electric current intensity. Density |   |                           | Teams |
| of the electric current. Ohm's law. Electrons in solids. Electrically         | 2 |                           |       |
| conductibility. Elements of electric circuit.                                 |   |                           |       |
| C11. Magnetism: Magnetic field. Sources of the magnetic field.                | 2 |                           | Teams |
| Lorentz force.                                                                | 2 |                           |       |
| C12. Magnetic flux. Gauss law for the magnetic field. Element of              | 2 |                           | Teams |
| current. Magnetic force (Laplace force). Biot-Savart law.                     | 2 |                           |       |
| C13. Magnetic field produced by a liner conductor. Magnetic field             |   |                           | Teams |
| produced by a loop. Ampere's law. Electromagnetic induction.                  | 2 |                           |       |
| Faraday's law.                                                                |   |                           |       |
| C14. Maxwell's equations (differential and integral forms).                   |   |                           | Teams |
| Electromagnetic waves: Maxwell's equations without sources,                   | 2 |                           |       |
| velocity, transversally, intensity, and range                                 |   |                           |       |

#### Bibliography

#### In UTC-N library

- 1. R. Fechete, Fundamental physics for engineers, course notes.
- 2. E. Culea, S. Nicoara, Fundamentals of Physics, RISOPRINT, Cluj-Napoca 2004
- 3. R. Fechete, Elemente de Fizica pentru Ingineri, Ed. UTPress, 2008.
- 4. I.Ardelean, Fizica pentru ingineri, Ed. UTPres, 2005.
- 5. I. Coroiu, E. Culea, Fizica I, Ed. UT. Press, 1999.

Multimedia teaching aids

- 6. Microsoft Encarta Encyclopedia.
- 7. Encyclopedia Britannica.

| 8.2 Applications – Seminars/Laboratory/Project                      | Hours | Teaching methods                                                            | Notes         |
|---------------------------------------------------------------------|-------|-----------------------------------------------------------------------------|---------------|
| <b>L1.</b> Work Protection. The study of thermoelectrically effect. | 1     | Heuristic discovery In laboratory of some physical                          | OnSite/OnLine |
| L2. Longitudinal and transverse standing waves.                     | 1     | phenomena.                                                                  | OnSite/OnLine |
| L3. Optical spectroscopy.                                           | 1     | Problematization                                                            | OnSite/OnLine |
| L4. The study of photoelectric effect.                              | 1     | (problematize)                                                              | OnSite/OnLine |
| <b>L5.</b> The determination of the energy gap of a semiconductor.  | 1     | presentations of laws and principles of                                     | OnSite/OnLine |
| L6. The study of Hall Effect.                                       | 1     | general physics with                                                        | OnSite/OnLine |
| L7. Polarizations of light.                                         | 1     | situations from real life, and situations from the future work of students. | OnSite/OnLine |

#### Bibliography

- 1. R. Fechete, R. Chelcea, D. Moldovan, S. Nicoara, I. Coroiu, C. Badea, E. Culea, I. Cosma, N. Serban, Fizica: Indrumator de laborator, UT. PRESS, Cluj-Napoca, ISBN 978-973-662-952-5, (2014).
- ${\bf 2.} \quad \underline{https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/ThermoelectricEffect/}$
- 3. <a href="https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/StandingWaves/">https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/StandingWaves/</a>
- 4. <a href="https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/AtomicSpectra/">https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/AtomicSpectra/</a>
- 5. <a href="https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/PhotoelectricEffect/">https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/PhotoelectricEffect/</a>
- 6. <a href="https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/HallEffect/">https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/HallEffect/</a>
- 7. <a href="https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/EnergyGap/">https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/EnergyGap/</a>
- $8. \quad \underline{\text{https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/PolarizationOfLight/}}\\$
- 9. <a href="http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng">http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng">http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng">http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng">http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng">http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng">http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultatii/CalculatoareEng">http://www.phys.utcluj.ro/resurse/Facultatii/CalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultatii/CalculatoareEng">http://www.phys.utcluj.ro/resurse/Facultatii/CalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultatii/CalculatoareEng">http://www.phys.utcluj.ro/resurse/Facultatii/CalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultatii/CalculatoareEng">http://www.phys.utcluj.ro/resurse/Facultatii/CalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultaitii/CalculatoareEng</a> <a href="http://www.phys.utcluj.ro/resurse/Facultaitii/CalculatoareEng</a

# 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

#### 10. Evaluation

| Activity type  | Assessment criteria                                                                                                                   | Assessment methods                                                                                                               | Weight in the final grade |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Course         | Theoretical Knowledges accumulated at class, individual study                                                                         | Teams' Quiz (16 questions; 5 answers/question)                                                                                   | 70%                       |
| Seminar        |                                                                                                                                       |                                                                                                                                  |                           |
| Laboratory     | Practical knowledges (abilities) accumulated in TUCN Laboratory + Individual study (essays on a general Physics subject or practical) | Essay, Practical Presentation, PPT presentation, written Problems, Numeric simulations of physical processes. On Line Assessment | 30%                       |
| Project        |                                                                                                                                       |                                                                                                                                  |                           |
| Minimum standa | rd of performance:                                                                                                                    |                                                                                                                                  |                           |

2.75/10 points (2.75 mark + (2.75 student – 1 default = 1.5) total 4.5 rounded to 5) + all laboratories

| Date of filling in: | Titulari     | Titlu Prenume NUME            | Semnătura |
|---------------------|--------------|-------------------------------|-----------|
|                     | Course       | Prof.dr.fiz. Radu Fechete     |           |
|                     |              |                               |           |
|                     | Applications | Lect. Dr. Dumitrita Corpodean |           |
|                     |              |                               |           |
|                     |              |                               |           |

| Date of approval in the department      | Head of department<br>Prof.dr.ing. Rodica Potolea |
|-----------------------------------------|---------------------------------------------------|
| Date of approval in the Faculty Council | Dean<br>Prof.dr.ing. Liviu Miclea                 |