SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	48.2

2. Data about the subject

2.1 Subject name			Translator design				
2.2 Course responsible/le	.2 Course responsible/lecturer		Assoc.prof. dr. eng. Emil Şt. Chifu – emil.chifu@cs.utcluj.ro				
2.3 Teachers in charge of laboratory/ project	semin	iars/	Ing. Ana Rednic Inf. Nandor Licker Ing. Laura Ceuca				
2.4 Year of study	IV	IV 2.5 Semester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)				E	
2.7 Cubiast astanam	DF – j	F – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară				DS	
2.7 Subject category	DI – Impusă, DOp – opțională, DFac – facultativă					DOp	

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars		Laboratory	2	Project	1
3.2 Number of hours per	70	، ماه : ماه : ماه ،	Ca	20	C = m = i m = m =			20	Duciost	1.4
semester	70	of which:	Course	28	Seminars	Laboratory	28	Project	14	
3.3 Individual study:	•									
(a) Manual, lecture material and notes, bibliography							25			
(b) Supplementary study in the library, online and in the field							15			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								27		
(d) Tutoring								10		
(e) Exams and tests							3			
(f) Other activities:							0			
3.4 Total hours of individual stud	y (suma	a (3.3(a)3	3.3(f)))		80				•	
3.5 Total hours per semester (3.2+3.4) 150										

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Formal Languages and Translators, Computer Programming, Data Structures and Algorithms
4.2 Competence	 Basic knowledge of programming and data structures (preferably in the C and Java languages) Concepts of generative grammars and formal languages To know the basic principles in the design of interpretors and translators for languages artificial Basic knowledge of relational databases and web applications

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Computers, specific software

6. Specific competence

	systems (2 credits)							
	C4.1 - Identifying and describing the defining elements of the performances of the							
	hardware, software and communication systems							
	C4.2 - Explaining the interaction of the factors that determine the performances of							
	the hardware, software and communication systems							
	C4.3 - Applying the fundamental methods and principles for increasing the							
	performances of the hardware, software and communication systems							
	C4.4 - Choosing the criteria and evaluation methods of the performances of the							
	hardware, software and communication systems							
	C4.5 - Developing professional solutions for hardware, software and							
	communication systems based on performance optimization							
	C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of							
	hardware, software and communication systems (2 credits)							
	C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security							
	and the computing system's interaction with the environment and the human							
	operator							
	•							
	C5.2 - Using interdisciplinary knowledge for adapting the computing system to the							
	specific requirements of the application field							
	C5.3 - Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems							
	C5.4 - Proper utilization of the quality, safety and security standards in the field of							
	information processing							
	C5.5 - Creating a project including the problem's identification and analysis, its design							
	and development, also proving an understanding of the basic quality requirements							
	C6 - Designing intelligent systems (1 credit)							
	C6.1 - Describing the components of intelligent systems							
	C6.2 - Using domain-specific tools for explaining and understanding the functioning							
	of intelligent systems							
	C6.3 - Applying the fundamental methods and principles							
	for specifying solutions for typical problems using intelligent systems							
	5.4 - Choosing the criteria and evaluation methods for the quality, performances and							
	limitations of intelligent systems							
	C6.5 - Developing and implementing professional projects for intelligent systems							
6.2 Cross competences	N/A							
<u>'</u>	•							

7. Discipline objective (as results from the key competences gained)

7.1 General objective	•	To know the phases of programming language translators: lexical analysis, syntactic analysis, and code generation.
	•	To master the basic and some advanced concepts of Natural Language Processing.
7.2 Specific objectives	•	To know the classes of languages for which efficient translators and
		interpreters can be implemented.
	•	To know the rules for processing typical statements for interpreters.
	•	By using the Prolog language, to build DCG parsers for natural language.
	•	By using the NLTK toolkit, to build semantic interpreters for natural language.
	•	To do liveness analysis for programming languages.

8. Contents

Hours	Teaching methods	Notes
2	Online:	
	- Online on the Teams	
2	•	
2		
2	- Details and examples	
2	at the blackboard	
	Hours 2 2 2 2	2 Online: - Online on the Teams platform - The main ideas presented on slides - Details and examples

analyzer (state diagrams, reserved words method).		(whiteboard), with
LL parsers: the LL(1) parsing algorithm for extended BNF grammars.	2	video, in interaction
LL parsers: computation of FIRST and FOLLOW sets.	2	with the students - There are online
LL parsers: examples of recursive-descent applications.	2	consultation hours
Theoretical results concerning the $LL(k)$ and $LR(k)$ grammars.	2	- Students are invited
LR parsers: LR(0) states, SLR(1) grammars.	2	to collaborate in
LR parsers: LALR(1) grammars.	2	research projects Onsite:
LR parsers: the LALR(1) algorithm.	2	- The main ideas with
LR parsers: shift-reduce transitions, chain production elimination.	2	multimedia
LR parsers: LR table compression.	2	techniques
Basic concepts of attribute grammars.	2	- Details and examples at the blackboard, in interaction with the students - There are consultation hours - Students are invited to collaborate in research projects

Bibliography

- 1. W.M. Waite and G. Goos, Compiler Construction, Springer-Verlag, 1984.
- 2. I.A. Leţia and E.Şt. Chifu, Limbaje formale şi translatoare, Ed. Casa cărţii de ştiinţă, 1998.
- 3. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley, 1986.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Laboratory			
Building recursive-descent parsers from extended BNF	2		
grammars.	2		
Recursive-descent (RD) applications:.expression	2		
evaluator.	2		
Definite clause grammars (DCGs) for parsing natural	2		
language.	2		
DCG: building parse trees and checking agreement.	2	Online: Online on the Teams platform	
DCG: dealing with natural language ambiguity.	2	Brief presentation at the blackboard	
Checking agreement in the Romanian language.	2	(whiteboard), with video (the teacher),	
DCG: machine translation.	2	implementing and testing examples and	
The NLTK toolkit: semantic analysis of natural		exercises on the students' computers	
language with Lambda calculus.	2	Onsite: Brief presentation at the blackboard (the	
NLTK: subcategorization frames.	2	teacher), implementing and testing	
NLTK: using the FrameNet lexical resourse, semantic		examples and exercises on the computer	
role labeling (SRL).	2	(the students)	
Using pre-trained language models: HuggingFace	2	(the stadents)	
transformers.	2		
HuggingFace transformers: summarization.	2		
HuggingFace transformers: machine translation.	2		
HuggingFace transformers: feature extraction.	2	7	
HuggingFace transformers: question answering.	2	7	
Project	•		
Lowering operators.	2	Online:	
Lowering control flow.	2	Online on the Teams platform	
Constant propagation.	2	Brief presentation at the blackboard	

Inlining.	2	(whiteboard), with video (the teacher),	
Record types.	2	implementing and testing examples and	
Specialisation.	2	exercises on the students' computers Onsite:	
Dead-code elimination.	2	Brief presentation at the blackboard (the teacher), implementing and testing examples and exercises on the computer (the students)	

Bibliography

1. I.A. Leţia, D. Marcu, B. Ungureanu, Procesoare de limbaje. Îndrumător de laborator, Universitatea Tehnică din Cluj-Napoca, 1995.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is a specialty course in Computer Science, its syllabus being both classical and modern. It teaches the students with the principles of efficient design and implementation of interpreters and translators for artificial languages. The syllabus of the course has been discussed with other important universities and companies from Romania, Europe, and USA. This syllabus has been evaluated by Romanian governmental agencies (CNEAA and ARAIS).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Lectures	- Problem-solving skills - Attendance, Activity	Online: - Gradual evaluation during the online lectures, based on a dialog with the students during the lectures - There is an online consultation hour meeting before the exam, during which bonuses for the final exam are granted - The final exam is oral, as an online meeting on the Teams platform Onsite: - Gradual evaluation during the lectures, based on a dialog with the students and their activity at the blackboard during the lectures - There are consultation hours before the exam, during which bonuses for the final exam are granted - The final exam is a written exam	44%
Laboratory Project	- Problem-solving skills - Attendance, Activity	Lab works: Online: - Gradual evaluation of the activity of students, at each lab meeting - Bonuses for the final exam are granted Onsite: - Gradual evaluation of the activity of students, at each lab meeting - Bonuses for the final exam are granted Project lab meetings: Online: - Gradual evaluation of the activity of students, at each project lab meeting	35%
		- Gradual evaluation of the activity of students, at each project lab meeting	

Minimum standard of performance:

Modelling typical engineering problems using the domain specific formal apparatus.

Grade calculus: 35% lab + 21% project + 44% final exam

Conditions for participating in the final exam: Lab ≥ 5 Conditions for promotion: grade ≥ 5

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Assoc.prof.dr.eng. Emil Ş. Chifu	
	Applications	Ing. Ana Rednic Inf. Nandor Licker Ing. Laura Ceuca	

Date of approval in the department	Head of department Prof.dr.ing. Rodica Potolea	
Date of approval in the Faculty Council	Dean Prof.dr.ing. Liviu Miclea	