
1/5

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca

1.2 Faculty Faculty of Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Bachelor of Science

1.6 Program of study/Qualification Computer science/ Engineer

1.7 Form of education Full time

1.8 Subject code 47.1

2. Data about the subject

2.1 Subject name Operating Systems Design

2.2 Course responsible/lecturer Assoc. prof. dr. eng. Adrian Coleşa – adrian.colesa@cs.utcluj.ro

2.3 Teachers in charge of seminars/
laboratory/ project

Assoc. prof. dr. eng. Adrian Coleşa – adrian.colesa@cs.utcluj.ro
Eng. Radu Portase – rportase@bitdefender.com
Eng. Istvan Szekely – iszekely@bitdefender.com
Eng. David Acs – dacs@bitdefender.com
Eng. Balint Szabo – bszabo@bitdefender.com
Eng. Laslo Ciople – lciople@bitdefender.com
Eng. Bogdan Ionuț Lazăr – bilazar@bitdefender.com
Eng. Istvan Csaszar - icsaszar@outlook.com

2.4 Year of study IV 2.5 Semester 1
2.6 Type of assessment (E - exam, C - colloquium, V -
verification)

E

2.7 Subject category
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară DS

DI – Impusă, DOp – opțională, DFac – facultativă DOp

3. Estimated total time

3.1 Number of hours per week 5 of which: Course 2 Seminars Laboratory 2 Project 1

3.2 Number of hours per
semester

70 of which: Course 28 Seminars Laboratory 28 Project 14

3.3 Individual study:

(a) Manual, lecture material and notes, bibliography 35

(b) Supplementary study in the library, online and in the field 0

(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 42

(d) Tutoring 1

(e) Exams and tests 2

(f) Other activities: 0

3.4 Total hours of individual study (suma (3.3(a)…3.3(f))) 80

3.5 Total hours per semester (3.2+3.4) 150

3.6 Number of credit points 6

4. Pre-requisites (where appropriate)

4.1 Curriculum Operating Systems

4.2 Competence C programming; Define and use basic OS concepts and system calls

5. Requirements (where appropriate)

5.1. For the course Blackboard / Whiteboard, Beamer

5.2. For the applications 64-bit Computers with hardware virtualization support, 64-bit Linux and

Windows, VMware Workstation, Blackboard / Whiteboard

mailto:adrian.colesa@cs.utcluj.ro
mailto:adrian.colesa@cs.utcluj.ro
mailto:rportase@bitdefender.com
mailto:iszekely@bitdefender.com
mailto:dacs@bitdefender.com
mailto:bszabo@bitdefender.com
mailto:lciople@bitdefender.com
mailto:bilazar@bitdefender.com
mailto:icsaszar@outlook.com

2/5

6. Specific competence

6.1 Professional competences C5: Designing, managing the lifetime cycle, integrating and ensuring the
integrity of hardware, software and communication systems
C5.1: Specifying the relevant criteria regarding the lifetime cycle, quality,
security and the computing system’s interaction with the environment and the
human operator
C5.2: Using interdisciplinary knowledge for adapting the computing system to
the specific requirements of the application field
C5.3: Using fundamental principles and methods for ensuring the security, the
safety and ease of exploitation of the computing systems
C5.4: Proper utilization of the quality, safety and security standards in the field
of information processing
C5.5: Creating a project including the problem’s identification and analysis, its
design and development, also proving an understanding of the basic quality
requirements

6.2 Cross competences N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective Provide the students a clear understanding of an OS’ internal structure, its

main components’ role and functionality, and the fundamental OS design and

implementation strategies.

7.2 Specific objectives Let the students:

1. Know and understand the possible OS internal structures.

2. Know and understand the possible design and implementation

alternatives of the main OS components, like the scheduler, process and

thread manager, memory manager etc.

3. Be able to analyze a specific OS design problems and find solutions to

them.

4. Be able to implement in C or assembly different OS components and

system calls.

5. Be able to work in team and manage relatively complex software projects.

8. Contents

8.1 Lectures Hours Teaching methods Notes

General structure of an OS. Possible OS structures (monolithic, layered,
micro-kernel, virtual machine, exokernel), its components, their
functionality, role, interconnectivity.

2
(1) use beamer slides,
combined with
blackboard illustration;

(2) interactions with
students: ask their
opinion relative to the
presented subject;

(3) give each class a short
evaluation test; let
students discuss and
argue each other their
solution; give them the
good solution and let
them evaluate their own
one;

(4) propose 2-3

Process and thread management (1). Scheduling algorithms. FCFS, SJF,
Priority-based, Lottery. Priority inversion.

2

Process and thread management (2). Scheduling algorithms: RR, MLFQ.
Use cases: Solaris, Windows and Linux scheduling policies.

2

Synchronization mechanisms (1). General Design Principles. Hardware
mechanisms used for implementation of higher-level synchronization
mechanisms. Design and implementation of locks, semaphores,
condition variables. Deadlock avoidance.

2

Synchronization mechanisms (2). Linux and Windows Use Cases. The
synchronization mechanisms provided by Linux and Windows. The way
they are implemented.

2

Synchronization mechanisms (3). Deadlock. Deadlock avoidance,
prevention and detection algorithms.

2

Process management (1). Definition of the process concept, system call
mechanism and possible implementations, handle (file descriptor)
management, basic system calls for process management.

2

3/5

Process management (2). Process memory address space structure,
argument passing on the stack, process creation strategies, multi-
threading support.

2
interesting study cases of
OSes to be prepared and
presented by students;

(5) students are invited to
collaborate in research
projects.

Memory management (1). General aspects, design and implementation
alternatives of different memory management techniques and
mechanisms: contiguous allocation, segmentation, and paging.

2

Memory management (2). Paging specific problems like page table
hierarchical structure, memory sharing, page tables for Intel
architecture.

2

Memory management (3). Virtual memory's design and implementation
aspects: swapping and lazy loading. Page replacement algorithms.

2

File systems (1). General Design Aspects. Design and implementation
alternatives of file systems concepts (files, directories), storage space
management. Advantages and disadvantages.

2

File systems (2). Linux and Windows File Systems. Design and
implementation of Ext2 and NTFS.

2

Security aspect. Subject review. Basic security aspects design. Overview
of all presented subjects.

2

Bibliography

1. A. Silberschatz, G. Gagne, P. B. Galvin, Operating Systems Concepts, 7
th

 edition, Wiley, 2005, ISBN 978-0-471-
69466-3

2. A. Tanenbaum, A. Woodhull. Operating Systems Design and Implementation. 3
rd

 edition, Prentice Hall, 2006, ISBN:
0131429388

3. Daniel Pierre Bovet, Understanding Linux Kernel, O'Reilly & Associates, 2001, ISBN 0-596-00002-2.

8.2 Applications – Seminars/Laboratory/Project Hours Teaching methods Notes

Introduction. Presentation of the lab / project OS (Pintos or HAL9000). (1) students are

presented a very brief

overview of the most

important and difficult

aspects of the working

subject;

(2) students are given at

the beginning of each

class a short evaluation

quiz;

(3) students are given a

hands-on tutorial to

practice with working

subject's aspects and to

solve problems

(4) students are given
challenging problems for
extra credit;

OS Debugging. Techniques and tools to debug an OS.

Thread management. Support for managing multiple executions inside
the OS kernel.

Synchronization mechanisms. Implementation of locks, semaphores and
condition variables.

Scheduling algorithms. Round-Robin, priority-based, multi-level
feedback queue (MLFQ).

User application support (1). System call mechanism. Learn the way the
system calls are implemented and used. Basic system call handling in the
OS kernel.

User application support (2). Basic memory management.
Implementation of basic system calls.

User application support (3). Multi-threaded application support.

Virtual memory (1). Lazy-loading mechanisms.

Virtual memory (2). Memory-mapped files.

Virtual memory (3). Swapping and page-replacement algorithms.

File system (1). Basic aspects of file implementation.

File system (2). Basic aspects of directory implementation.

Lab examination.

Bibliography

1. Lecture slides and laboratory text and support at http://moodle.cs.utcluj.ro/

2. Pintos and HAL9000 manual.

9. Bridging course contents with the expectations of the representatives of the community, professional

associations and employers in the field

OS knowledge is a fundamental requirement in the CS field. The OSD course presents techniques for hardware and
software resources management, which are applicable on any complex management software application. Besides, it
provides students detailed knowledge about modern OSes' internals, making them capable of developing more
efficient applications. We follow the ACM curricula guide. OSD course’s curriculum also maps the IT companies

http://moodle.cs.utcluj.ro/

4/5

expectations, especially those dealing with direct access to OS services or developing kernel drivers or modules. Such
companies are, for instance, system and data security and antivirus detection companies. Usually the teachers in
charge of lab classes are former graduate students of our CS program with consistent experience in industry, in
companies like those mentioned above. They are permanently consulted regarding the OS course curriculum and its
applicability in real projects in industry.

10. Evaluation

Activity type Assessment criteria Assessment methods
Weight in the

final grade

Course Students must understand fundamental OS
structure and design alternatives and be
able to explicitly describe it. They must
also be able to apply their knowledge to
give solutions to specific OS design
problems.

Online quiz tests using the
Moodle platform and oral
examination. Detailed discussion
about design alternatives of
different OS components.

In exceptional situations (like
those imposed by government
for self-isolation and remote
school activities), the online
examination could also be taken
by students from a remote
location using Moodle and
Teams platforms.

0.67

Seminar - - -

Laboratory Students must be able to develop different
OS components writing code in C and
assembly.

Lab: implementation of different
problems in the lab OS.
Project: presentation of design
and implementation solutions.

In exceptional situations (like
those imposed by government
for self-isolation and remote
school activities), the online
examination could also be taken
by students from a remote
location using Moodle and
Teams platforms.

0.33

Project

Minimum standard of performance:
Students must attend minimum 9 lecture classes to be allowed to take the exam in the regular exam session. Students

must attend minimum 7 lecture classes to be allowed to take the exam in any re-examination sessions. Less than 7

attended lecture classes leads to the interdiction to take any course re-examination in the university year the course is

taught.

Students must attend minimum 12 lab classes to be allowed to take the exam in the regular exam session. Students

must attend minimum 10 lab classes to be allowed to take the exam in any re-examination sessions. Less than 10

attended lab classes leads to the interdiction to take any lab re-examination in the university year the course is taught.

Students must submit solutions for at least 3 project assignments (from the total no of 6 assignments) and receive at

least 5 for each submitted assignment.

Students are allowed to take the final course examination only after passing the lab and project examination.

Be able to describe the internal aspects of the fundamental OS design principles, like locks, priority-based and RR

scheduling, system calls, paging, virtual memory.

Be able to write functional C code that pass at least one test from the provided test set.

5/5

Date of filling in Responsible Title, first name, family name Signature

 Course Assoc.prof. dr. eng. Adrian Coleşa

Applications

Assoc.prof. dr. eng. Adrian Coleşa

Eng. Radu Portase

Eng. Istvan Szekely

Eng. Bogdan Ionuț Lazăr

Eng. David Acs

Eng. Balint Szabo

Eng. Laslo Ciople

Eng. Istvan Csaszar

Date of approval in the department

Head of department
Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council Dean
Prof.dr.ing. Liviu Miclea

