SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	36.

2. Data about the subject

2.1 Subject name			Graph	Graphic Processing				
2.2 Course responsible/led	cturer	-	Prof.dr.eng. Gorgan Dorian – dorian.gorgan@cs.utcluj.ro					
2.3 Teachers in charge of slaboratory/ project	semin	ars/	Conf.dr.eng. Bacu Victor, Lect.eng. Adrian Sabou, Lect.eng. Constantin Nandr {victor.bacu, adrian.sabou, constantin.nandra}@cs.utcluj.ro					
2.4 Year of study	Ш	2.5 Sem	ester	ster 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E		
2.7 Cubicat astagony	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară				DD			
2.7 Subject category DI – Impusă, E			Op – opț	ionald	ă, DFac – facultativă	DI		

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material	and n	otes, bibli	ography							20
(b) Supplementary study in the library, online and in the field							6			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10			
(d) Tutoring							3			
(e) Exams and tests							5			
(f) Other activities:						0				
3.4 Total hours of individual study (suma	(3.3(a)3	3.3(f)))		44					

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Computer programming (C language) Elements of Computer Assisted Graphics
4.2 Competence	Applications development in C programming language, Graphical systems architecture, The graphical processing pipeline

5. Requirements (where appropriate)

5.1. For the course	Projector, computer
5.2. For the applications	Laboratory attendance is mandatory
	Study of laboratory materials from the server

6. Specific competence

6.1 Professional competences	C4 – Improving the performances of the hardware, software and
	communication systems (4 credits)
	C4.1 – Identifying and describing the defining elements of the performances of
	the hardware, software and communication systems
	C4.2 – Explaining the interaction of the factors that determine the
	performances of the hardware, software and communication systems

	C4.3 – Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems C4.4 – Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems C4.5 – Developing professional solutions for hardware, software and communication systems based on performance optimization		
6.2 Cross competences	N/A		

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Study and experiment with the 3D photorealistic algorithms. Development of 2D and 3D graphics applications.
7.2 Specific objectives	 Creation of the graphic model of a 3D scene of objects Implementation and usage of the fundamental 3D graphics algorithms that can be found in the core of a graphic system Development of graphic applications in a high-level programming language (C, C++) based on graphics libraries (ex. OpenGL) Implementation of the main phases of the graphics transformation pipeline, in order to transform a 3D scene into an image.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Computational graphics	2	New multimedia	
Hidden line and surface removal algorithms. Part 1	2	teaching approaches	
Hidden line and surface removal algorithms. Part 2	2	will be used in classes.	
3D objects modeling. Polygonal models. Parametrical model. Procedural models.	2	The course is	During the
Particles based models	2	interactive and	semester and
Polygonal objects rendering. Part 1	2	includes	before each
Polygonal objects rendering. Part 2	2	demonstrations that	exam there
Illumination models. Local reflection model. Phong model	2	exemplify graphical	are a few
Shadow computation	2	methods and	preparation
Texture mapping. Part1	2	algorithms.	hours planned.
Texture mapping. Part2	2	Interactive online	pianneu.
Global reflection models. Ray-tracing algorithm	2	presentation by	
Global reflection models. Radiosity algorithm	2	remote educational	
Graphical animation	2	platforms.	

Bibliography

- 1. Watt A., "3D Computer Graphics". Addison-Wesley, 1998.
- 2. Watt A., Policarpo F.: "3D Games. Real-time Rendering and Software Technology". Addison-Wesley, 2001.
- 3. Akenine-Moller T., Haines E., "*Real-Time Rendering*". A.K. Peters 2nd edition, 2002.
- 4. Foley J.D., van Dam, A., Feiner, S.K., Hughes, J.F., "*Computer Graphics. Principles and Practice*". Addison-Wesley Pblishing Comp., 1992.
- 5. Gorgan D., Rusu, D., "Elemente de Grafică pe Calculator". Cluj-Napoca, 1996.

In virtual library

Course resources, https://moodle.cs.utcluj.ro/

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Mathematics for computer graphics	2	Documentation and	Each student
Introduction to modern OpenGL	2	examples will be	will have to
Basic vertex and fragment shaders	2	available to the	develop a
Debugging methods	2	students, prior to the	specific
3D Transformations	2	laboratory classes, on a dedicated server.	project based on the
3D models and textures	2	The students will	knowledge
First project evaluation	2	work independently	acquired at
Lighting model - Part 1	2	but will also be	the

Lighting model - Part 2	2	assisted by the	laboratory
Shadow mapping	2	teacher.	hours.
Second project evaluation	2	Interactive online	
Cube maps and environmental mapping	2	presentation by	
Normal mapping	2	remote educational	
Final project assessment	2	platforms.	
Bibliography			
 Curse and practical works, http://cgis.utcluj.ro/teaching/ 			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline is integrated into the Computers and Information Technology domain. The content is classic, yet modern, and introduces to students the fundamentals of 3D graphic systems and algorithms. The content of this discipline has been aligned with the information presented in similar disciplines from other major universities and companies from Romania, Europe and USA and has been evaluated by the authorized Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Requirement to participate to exam: L≥5

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	The written exam evaluates the	Evaluation is performed through	50% (E)
	understanding of the information	written exam and activity at the	10% (AC)
	presented in classes and the ability to	course.	
	apply this knowledge.		
	The activity in class evaluates the active	Online tests by remote	
	involvement of the students in the	educational platforms.	
	teaching process and their participation to		
	the discussions, debates and other class		
	activities during the entire semester.		
Laboratory	Laboratory assessment evaluates the	Evaluation is performed through	
	practical abilities obtained by the students.	written and practical exam.	
	Through homework assignments the		
	students have the opportunity to develop	Online interactive presentations	40% (L)
	their skill in applying the notions, concepts	performed by students and tests	
	and methods presented in class.	by remote educational	
		platforms.	
Minimum standa	d of performance:		
Graduation requi	rement: M≥5, final mark M=0.5*E+0.4*L+0.1*A	С	

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Prof.dr.eng. Dorian Gorgan	
	Applications	Conf.dr.eng. Victor Bacu Lect.eng. Adrian Sabou	
		Lect.eng. Constantin Nandra	
Date of approval in the department		Head of department Prof.dr.ing. Rodica Potolea	
Date of approval in the Faculty Council		Dean Prof.dr.ing. Liviu Miclea	